Skip to main content
Log in

Influence of viscosity on the phase transformation of amorphous calcium carbonate in fluids: An understanding of the medium effect in biomimetic mineralization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Biological mineral generation via an amorphous precursor is a topic of great current interest. Various factors such as the temperature, solution composition and presence of organic molecules can influence this important inorganic process. Here we demonstrate that this mineral transformation can actually readily be regulated by solution viscosity, a fundamental but often overlooked property. In our experiment, amorphous calcium carbonate (ACC), a key model compound in biomimetic mineralization studies, is synthesized and dispersed into inert dispersants with different viscosities and the crystallization process is examined by using FT-IR spectroscopy and XRD. It is found that the inhibition of the transformation of ACC becomes more significant with increasing fluid viscosity. This phenomenon can be explained by the differences in ion diffusion in different media. Furthermore, the resulting crystals always have different morphologies and size distributions although they all have the calcite structure. This study implies that the importance of the fluid medium cannot be ignored in building a complete understanding of biological control of biomimetic crystallizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its role in biomineralization. Adv Mater, 2003, 15: 959–970

    Article  CAS  Google Scholar 

  2. Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters. Science, 2008, 322: 1819–1822

    Article  CAS  Google Scholar 

  3. Pouget EM, Bomans PHH, Goos JACM, Frederik PM, With G, Sommerdijk NAJM. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science, 2009, 323: 1455–1458

    Article  CAS  Google Scholar 

  4. Jacob DE, Soldati AL, Wirth R, Huth J, Wehrmeister U, Hofmeister W. Nanostructure, composition and mechanisms of bivalve shell growth. Geochim Cosmochim Acta, 2008, 72: 5401–5415

    Article  CAS  Google Scholar 

  5. Nakahara H, Bevelander G. The formation and growth of the prismatic layer of Pinctada radiata. Calc Tissue Res, 1971, 7: 31–45

    Article  CAS  Google Scholar 

  6. Falini G, Fermani S, Gazzano M, Ripamonti A. Biomimetic crystallization of calcium carbonate polymorphs by means of collagenous matrices. Chem Eur J, 1997, 3: 1807–1814

    Article  CAS  Google Scholar 

  7. Imai H, Terada T, Yamabi S. Self-organized formation of a hierarchical self-similar structure with calcium carbonate. Chem Commun, 2003, 484–485

  8. Yang D, Qi L, Ma JM. Well-defined star-shaped calcite crystals formed in agarose gels. Chem Commun, 2003, 1180–1181

  9. Grassman O, Löbmann P. Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups. Biomaterial, 2004, 25: 277–282

    Article  Google Scholar 

  10. Li HY, Estroff L A. Hydrogels coupled with self-assembled monolayers: An in vitro matrix to study calcite biomineralization. J Am Chem Soc, 2007, 129: 5480–5483

    Article  CAS  Google Scholar 

  11. Estroff LA, Addadi L, Weiner S, Hamilton AD. An organic hydrogel for the growth of calcium carbonate. Org Biomol Chem, 2004, 2: 137–141

    Article  CAS  Google Scholar 

  12. Li HY, Estroff LA. Porous calcite single crystals grown from a hydrogel medium. CrystEngComm, 2007, 9: 1153–1155

    Article  CAS  Google Scholar 

  13. Guo XH, Yu SH, Cai GB. Crystallization in a mixture of solvents by using a crystal modifier: morphology control in the synthesis of highly monodisperse CaCO3 microspheres. Angew Chem Int Ed, 2006, 45: 3977–3981

    Article  CAS  Google Scholar 

  14. Chen SF, Zhu JH, Jiang J, Cai GB, Yu SH. Polymer-controlled crystallization of unique mineral superstructures. Adv Mater, 2010, 22: 540–545

    Article  CAS  Google Scholar 

  15. Qi LM, Li J, Ma JM. Morphological control of CaCO3 particles by a double-hydrophilic block copolymer in mixed alcohol-water solvents (in Chinese). Chem J Chin Univ, 2002, 23: 1595–1597

    CAS  Google Scholar 

  16. Faatz M, Gröhn F, Wegner G. Amorphous calcium carbonate: Synthesis and potential intermediate in biomineralization. Adv Mater, 2004, 16: 996–1000

    Article  CAS  Google Scholar 

  17. Haraschta P, Heintz A, Lehmann JK, Peters A. Excess molar volumes and viscosities of binary mixtures of 4-methylpyridine with methanol, ethanol, propan-1-ol, propan-2-ol, butan-2-ol, and 2-methylpropan-2-ol at 298.15 K and atmospheric pressure. J Chem Eng Data, 1999, 44: 932–935

    Article  CAS  Google Scholar 

  18. Xu XR, Cai AH, Liu R, Pan HH, Tang RK, Cho K. The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate. J Crystal Growth, 2008, 310: 3779–3787

    Article  CAS  Google Scholar 

  19. Cölfen H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Comm, 2001, 22: 219–252

    Article  Google Scholar 

  20. Cölfen H, Antonietti M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers. Langmuir, 1998, 14: 582–589

    Article  Google Scholar 

  21. Gao YX, Yu SH, Guo XH. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface. Langmuir, 2006, 22: 6125–6129

    Article  CAS  Google Scholar 

  22. Chen SF, Yu SH, Jiang J, Li FQ, Liu YK. Polymorph discrimination of CaCO3 mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. Chem Mater, 2006, 18: 115–122

    Article  CAS  Google Scholar 

  23. Qi LM, Li J, Ma JM. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv Mater, 2002, 14: 300–303

    Article  CAS  Google Scholar 

  24. Xyla AG, Koutsoukos PG. Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy. J Chem Soc, Faraday Trans, 1989, 85: 3165–3172

    Article  CAS  Google Scholar 

  25. Vagenas NV, Gatsouli A, Kontoyannis CG. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta, 2003, 59: 831–836

    Article  CAS  Google Scholar 

  26. Beniash E, Aizenberg J, Addadi L, Weiner S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond B, 1997, 264: 461–465

    Article  CAS  Google Scholar 

  27. Gueta R, Natan A, Addadi L, Weiner S, Refson K, Kronik L. Local atomic order and infrared spectra of biogenic calcite. Angew Chem Int Ed, 2007, 46: 291–294

    Article  CAS  Google Scholar 

  28. Tao JH, Zhou DM, Zhang ZS, Xu XR, Tang RK. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc Natl Acad Sci, 2009, 106: 22096–22101

    Article  CAS  Google Scholar 

  29. Ogino T, Suzuki T, Sawada K. The formation and transformation mechanism of calcium carbonate in water. Geochim Cosmochim Acta, 1987, 51: 2757–2567

    Article  CAS  Google Scholar 

  30. Politi Y, Arad T, Klein E, Weiner S, Addadi L. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 2004, 306: 1161–1164

    Article  CAS  Google Scholar 

  31. Nassif N, Pinna N, Gehrke N, Antonietti M, Jäger C, Cölfen H. Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci, 2005, 102: 12653–12655

    Article  CAS  Google Scholar 

  32. Mount AS, Wheeler AP, Paradkar RP, Snider D. Hemocyte-mediated shell mineralization in the eastern oyster. Science, 2004, 304: 297–300

    Article  CAS  Google Scholar 

  33. Aizenberg J, Muller DA, Grazul JL, Hamann DR. Direct fabrication of large micropatterned single crystals. Science, 2003, 299: 1205–1208

    Article  CAS  Google Scholar 

  34. Hetherington NBJ, Kulak AN, Sheard K, Meldrum FC. Crystallization on surfaces of well-defined topography. Langmuir, 2006, 22: 1955–1958

    Article  CAS  Google Scholar 

  35. Addadi L, Joester D, Nudelman F, Weiner S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem Eur J, 2006, 12: 980–987

    Article  CAS  Google Scholar 

  36. Al-Sawalmih A, Li CH, Siegel S, Fratzl P, Paris O. On the stability of amorphous minerals in lobster cuticle. Adv Mater, 2009, 21: 4011–4015

    Article  CAS  Google Scholar 

  37. Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev, 2008, 108: 4551–4627

    Article  CAS  Google Scholar 

  38. Hosoda N, Kato T. Thin-film formation of calcium carbonate crystals: Effects of functional groups of matrix polymers. Chem Mater, 2001, 13: 688–693

    Article  CAS  Google Scholar 

  39. Ajikumar PK, Lakshminarayanan R, Valiyaveettil S. Controlled deposition of thin films of calcium carbonate on natural and synthetic templates. Cryst Growth Des, 2004, 4: 331–335

    Article  CAS  Google Scholar 

  40. Mann S, Heywood BR, Rajam S, Birchall JD. Controlled crystallization under stearic acid monolayers. Nature, 1988, 334: 692–695

    Article  CAS  Google Scholar 

  41. Xu G, Yao N, Aksay IA, Groves JT. Biomimetic synthesis of macroscopic scale calcium carbonate thin films. Evidence for a multistep process. J Am Chem Soc, 1998, 120: 11977–11985

    Article  CAS  Google Scholar 

  42. Aizenberg J, Black AJ, Whitesides GM. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. J Am Chem Soc, 1999, 121: 4500–4509

    Article  CAS  Google Scholar 

  43. Küther J, Seshadri R, Knoll W, Tremel W. Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold. J Mater Chem, 1998, 8: 641–650

    Article  Google Scholar 

  44. Cölfen H, Qi LM. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem Eur J, 2001, 7: 106–116

    Article  Google Scholar 

  45. Yu SH, Cölfen H, Hartmann J, Antonietti M. Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Adv Funct Mater, 2002, 12: 541–545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XuRong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Xu, X. & Tang, R. Influence of viscosity on the phase transformation of amorphous calcium carbonate in fluids: An understanding of the medium effect in biomimetic mineralization. Sci. China Chem. 53, 2208–2214 (2010). https://doi.org/10.1007/s11426-010-4104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4104-y

Keywords

Navigation