Skip to main content
Log in

Co(acac)3/BMMImCl as a base-free catalyst system for clean syntheses of N,N′-disubstituted ureas from amines and CO2

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A base-free catalyst system Co(acac)3/BMMImCl was developed for the carbonylation of amines with CO2. 45%\2-81% isolated yields for N,N-dialkylureas and 6%\2-23% isolated yields for N,N-diarylureas were obtained. The catalyst system was recovered and reused without significant loss in activity. In this catalyst system, the base catalyst and chemical dehydrant were efficiently avoided. Different reaction conditions were also discussed and a postulated mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam P, Jadhav PK, Eyermann CJ, Hodge CN, Ru Y, Bacheler LT, Meek JL, Otto M, Rayner MM, Wong YN, Chang CH, Weber PC, Jackson DA, Sharp TR, Erickson-Viitanen S, Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science, 1994, 263: 380–384

    Article  CAS  Google Scholar 

  2. Vishnyakova TP, Golubeva IA, Glebova EV. Substituted ureas. Methods of synthesis and applications. Russ Chem Rev, 1985, 54: 429–449

    Article  CAS  Google Scholar 

  3. Gupte SP, Chaudhari RV. Oxidative carbonylation of aniline over Pd/C catalyst: Effect of promoters, solvents, and reaction conditions. J Catal, 1988, 114: 246–258

    Article  CAS  Google Scholar 

  4. Majer P, Randad RS. A safe and efficient method for preparation of N, N′-unsymmetrically disubstituted ureas utilizing triphosgene. J Org Chem, 1994, 59: 1937–1938

    Article  CAS  Google Scholar 

  5. Tran K, Berlin D. A new simplified method for the preparation of N, N′-diphenylurea. Org Prep Proced Int, 2004, 36: 71–74

    Article  CAS  Google Scholar 

  6. Rajnikant, Dinesh, Deshmukh MB, Kamni. Synthesis, X-ray structure and N-H…O interactions in 1,3-diphenyl-urea. Bull Mater Sci, 2006, 29: 239–242

    Article  CAS  Google Scholar 

  7. Mojtahedi MM, Saidi MR, Bolourtchian M. A novel method for the synthesis of disubstituted ureas and thioureas under microwave irradiation. J Chem Res (s), 1999, 710-711

  8. Mukherjee DK, Saha CR. Soluble and polymer-anchored rhodium catalyst for carbonylation reaction: Kinetics and mechanism of diphenylurea formation. J Catal, 2002, 210: 255–262

    Article  CAS  Google Scholar 

  9. Shi F, Zhang QH, Gu YL, Deng YQ. Silica gel confined ionic liquid+ metal complexes for oxygen-free carbonylation of amines and nitrobenzene to ureas. Adv Synth Catal, 2005, 347: 225–230

    Article  CAS  Google Scholar 

  10. Mukherjee DK, Saha CR. Reusable polymer-anchored catalyst for carbonylation reaction: kinetics and mechanism for diphenylurea formation. J Mol Catal A, 2003, 193: 41–50

    Article  CAS  Google Scholar 

  11. Sakakura T, Choi JC, Yasuda H. Transformation of carbon dioxide. Chem Rev, 2007, 107: 2365–2387

    Article  CAS  Google Scholar 

  12. Jessop PG, Ikariya T, Noyori R. Homogeneous Hydrogenation of carbon dioxide. Chem Rev, 1995, 95: 259–272

    Article  CAS  Google Scholar 

  13. Yu KMK, Yeung CMY, Tsang SC. Carbon dioxide fixation into chemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnO nanocatalyst. J Am Chem Soc, 2007, 129: 6360–6361

    Article  CAS  Google Scholar 

  14. Song JL, Zhang ZF, Hu SQ, Wu TB, Jiang T, Han BX. MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem, 2009, 11: 1031–1036

    Article  CAS  Google Scholar 

  15. Nomura R, Yamamoto M, Matsuda H. Preparation of cyclic ureas from carbon dioxide and diamines catalyzed by triphenylstibine oxide. Ind Eng Chem Res, 1987, 26: 1056–1059

    Article  CAS  Google Scholar 

  16. Ion A, Parvulescu V, Jacobs P, Vos DD. Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis. Green Chem, 2007, 9: 158–161

    Article  CAS  Google Scholar 

  17. Bhanage BM, Fujita SI, Ikushima Y, Arai M. Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem, 2003, 5: 340–342

    Article  CAS  Google Scholar 

  18. Fournier J, Bruneau C, Dixneuf PH, Lecolier S. Ruthenium-catalyzed synthesis of symmetrical N, N′-dialkylureas directly from carbon dioxide and amines. J Org Chem, 1991, 56: 4456–4458

    Article  CAS  Google Scholar 

  19. Ogura H, Takeda K, Tokue R, Kobayashi T. A convenient direct synthesis of ureas from carbon dioxide and amines. Synthesis, 1978, 394-396

  20. Munshi P, Heldebrant DJ, McDoon EP, Kelly PA, Tai CC, Jessop PG. Formanilide and carbanilide from aniline and carbon dioxide. Tetrahedron Lett, 2003, 44: 2725–2727

    Article  CAS  Google Scholar 

  21. Nomura R, Hasegawa Y, Ishimoto M, Toyosaki T, Matsuda H. Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst. J Org Chem, 1992, 57: 7339–7342

    Article  CAS  Google Scholar 

  22. Yamazaki N, Higashi F, Iguchi T. Carbonylation of amines with carbon dioxide under atmospheric conditions. Tetrahedron lett, 1974, 15: 1191–1194

    Article  Google Scholar 

  23. Cooper CF, Falcone SJ. A simple one-pot procedure for preparing symmetrical diarylureas from carbon dioxide and aromatic amines. Synth Commun, 1995, 25: 2467–2474

    Article  CAS  Google Scholar 

  24. Shi F, Deng YQ, SiMa TL, Peng JJ, Gu YL, Qiao BT. Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed, 2003, 42: 3257–3260

    Article  CAS  Google Scholar 

  25. Earle MJ, Esperanca JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA. The distillation and volatility of ionic liquids. Nature, 2006, 439: 831–834

    Article  CAS  Google Scholar 

  26. Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc, Chem Commun, 1992, 965-967

  27. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 1996, 35: 1168–1178

    Article  CAS  Google Scholar 

  28. Sun J, Forsyth M, Macfarlane DR. Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B, 1998, 102: 8858–8864

    Article  CAS  Google Scholar 

  29. Moreno M, Castiglione F, Mele A, Pasqui C, Raos G. Interaction of water with the model ionic liquid [bmim][BF4]: Molecular dynamics simulations and comparison with NMR data. J Phys Chem B, 2008, 112: 7826–7836

    Article  CAS  Google Scholar 

  30. Yoshimura Y, Goto T, Abe H, Imai Y. Existence of nearly-free hydrogen bonds in an ionic liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate-water at 77 K. J Phys Chem B, 2009, 113: 8091–8095

    Article  CAS  Google Scholar 

  31. Kim DW, Hong DJ, Seo JW, Kim HS, Kim HK, Song CE, Chi DY. Hydroxylation of alkyl halides with water in ionic liquid: significantly enhanced nucleophilicity of water. J Org Chem, 2004, 69: 3186–3189

    Article  CAS  Google Scholar 

  32. Dunetz JR, Ciccolini RP, Froling M, Paap SM, Allen AJ, Holmes AB, Tester JW, Danheiser RL. Pictet-spengler reactions in multiphasic supercritical carbon dioxide/CO2-expanded liquid media. In situ generation of carbamates as a strategy for reactions of amines in supercritical carbon dioxide. Chem Commun, 2005, 4465-4467

  33. Gao JJ, Li HQ, Zhang YF, Zhang Y. A non-phosgene route for the synthesis of methyl N-Phenyl carbamate derived from CO2 under mild conditions. Green Chem, 2007, 9: 572–576

    Article  CAS  Google Scholar 

  34. Chen B, Chuang SSC. CuCl2 and PdCl2 catalysts for oxidative carbonylation of aniline with methanol. J Mol Catal A, 2003, 195: 37–45

    Article  CAS  Google Scholar 

  35. Li QF, Wang JW, Dong WS, Kang MQ, Wang XK, Peng SY. A phosgene-free process for the synthesis of methyl N-Phenyl carbamate by the reaction of aniline with methyl carbamate. J Mol Catal A, 2004, 212: 99–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouQuan Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Guo, X., Wang, L. et al. Co(acac)3/BMMImCl as a base-free catalyst system for clean syntheses of N,N′-disubstituted ureas from amines and CO2 . Sci. China Chem. 53, 1534–1540 (2010). https://doi.org/10.1007/s11426-010-4026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4026-8

Keywords

Navigation