Skip to main content
Log in

Lewis base-CO2 adducts as organocatalysts for CO2 transformation

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the recent decade, the development and application of organocatalysis for CO2 transformation into useful chemicals have attracted much attention. Among these organocatalysts, Lewis base-CO2 adducts (LB-CO2) were found to be more efficient. The used Lewis base has great effect on the catalytic activity of its CO2 adduct. This review reports the recent progress in LB-CO2 adducts catalyzed the cyclization of CO2 with epoxides or aziridines to afford cyclic carbonates or oxazolidinones, the carboxylation of CO2 with propargylic alcohols to α-alkylidene cyclic carbonates, and the reduction of CO2 to methanol, formamides and methylamines, with the focus on the catalytic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hileman B. Chem Eng News, 1995, 73: 18–23

    Article  Google Scholar 

  2. Hileman B. Chem Eng News, 1997, 75: 8–16

    Article  Google Scholar 

  3. Solomon S, Plattner GK, Knutti R, Friedlingstein P. Proc Natl Acad Sci USA, 2009, 106: 1704–1709

    Article  CAS  Google Scholar 

  4. Sakakura T, Choi JC, Yasuda H. Chem Rev, 2007, 107: 2365–2387

    Article  CAS  Google Scholar 

  5. Darensbourg DJ. Chem Rev, 2007, 107: 2388–2410

    Article  CAS  Google Scholar 

  6. Lu XB, Darensbourg DJ. Chem Soc Rev, 2012, 41: 1462–1484

    Article  CAS  Google Scholar 

  7. Yang ZZ, He LN, Gao J, Liu AH, Yu B. Energy Environ Sci, 2012, 5: 6602–6639

    Article  CAS  Google Scholar 

  8. Aresta M, Dibenedetto A, Angelini A. Chem Rev, 2014, 114: 1709–1742

    Article  CAS  Google Scholar 

  9. Dibenedetto A, Angelini A, Stufano P. J Chem Technol Biotechnol, 2014, 89: 334–353

    Article  CAS  Google Scholar 

  10. Yang L, Wang H. ChemSusChem, 2014, 7: 962–998

    Article  CAS  Google Scholar 

  11. Yu B, He LN. ChemSusChem, 2015, 8: 52–62

    Article  CAS  Google Scholar 

  12. Lu XB, Ren WM, Wu GP. Acc Chem Res, 2012, 45: 1721–1735

    Article  CAS  Google Scholar 

  13. Fiorani G, Guo W, Kleij AW. Green Chem, 2015, 17: 1375–1389

    Article  CAS  Google Scholar 

  14. Murphy LJ, Robertson KN, Kemp RA, Tuononen HM, Clyburne JAC. Chem Commun, 2015, 51: 3942–3956

    Article  CAS  Google Scholar 

  15. Maeda C, Miyazaki Y, Ema T. Catal Sci Technol, 2014, 4: 1482–1497

    Article  CAS  Google Scholar 

  16. Palmer DA, Van Eldik R. Chem Rev, 1983, 83: 651–731

    Article  CAS  Google Scholar 

  17. Braunstein P, Matt D, Nobel D. Chem Rev, 1988, 88: 747–764

    Article  CAS  Google Scholar 

  18. Cutler AR, Hanna PK, Vites JC. Chem Rev, 1988, 88: 1363–1403

    Article  CAS  Google Scholar 

  19. Leitner W. Coordin Chem Rev, 1996, 153: 257–284

    Article  CAS  Google Scholar 

  20. Yin X, Moss JR. Coordin Chem Rev, 1999, 181: 27–59

    Article  CAS  Google Scholar 

  21. Gibson DH. Chem Rev, 1996, 96: 2063–2096

    Article  CAS  Google Scholar 

  22. Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G. Angew Chem Int Ed, 2009, 48: 6643–6646

    Article  Google Scholar 

  23. Dureen MA, Stephan DW. J Am Chem Soc, 2010, 132: 13559–13568

    Article  CAS  Google Scholar 

  24. Ménard G, Stephan DW. J Am Chem Soc, 2010, 132: 1796–1797

    Article  Google Scholar 

  25. Stephan DW, Erker G. Angew Chem Int Ed, 2010, 49: 46–76

    Article  CAS  Google Scholar 

  26. Hounjet LJ, Caputo CB, Stephan DW. Angew Chem Int Ed, 2012, 51: 4714–4717

    Article  CAS  Google Scholar 

  27. Courtemanche MA, Légaré MA, Maron L, Fontaine FG. J Am Chem Soc, 2013, 135: 9326–9329

    Article  CAS  Google Scholar 

  28. Courtemanche MA, Légaré MA, Maron L, Fontaine FG. J Am Chem Soc, 2014, 136: 10708–10717

    Article  CAS  Google Scholar 

  29. Stephan DW. J Am Chem Soc, 2015, 137: 10018–10032

    Article  CAS  Google Scholar 

  30. Metters OJ, Forrest SJK, Sparkes HA, Manners I, Wass DF. J Am Chem Soc, 2016, 138: 1994–2003

    Article  CAS  Google Scholar 

  31. Lan DH, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CT, Yin SF. Chin J Catal, 2016, 37: 826–845

    Article  CAS  Google Scholar 

  32. Villiers C, Dognon JP, Pollet R, Thuéry P, Ephritikhine M. Angew Chem Int Ed, 2010, 49: 3465–3468

    Article  CAS  Google Scholar 

  33. Xin Z, Lescot C, Friis SD, Daasbjerg K, Skrydstrup T. Angew Chem Int Ed, 2015, 54: 6862–6866

    Article  CAS  Google Scholar 

  34. Kuhn N, Steimann M, Weyers G. Z Naturforsch B, 1999, 54: 427–433

    CAS  Google Scholar 

  35. Duong HA, Tekavec TN, Arif AM, Louie J. Chem Commun, 2004, 112

    Google Scholar 

  36. Aldeco-Perez E, Rosenthal AJ, Donnadieu B, Parameswaran P, Frenking G, Bertrand G. Science, 2009, 326: 556–559

    Article  CAS  Google Scholar 

  37. Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J. J Org Chem, 2009, 74: 7935–7942

    Article  CAS  Google Scholar 

  38. Zhou H, Zhang WZ, Liu CH, Qu JP, Lu XB. J Org Chem, 2008, 73: 8039–8044

    Article  CAS  Google Scholar 

  39. Delaude L. Eur J Inorg Chem, 2009, 2009: 1681–1699

    Article  Google Scholar 

  40. Pinaud J, Vignolle J, Gnanou Y, Taton D. Macromolecules, 2011, 44: 1900–1908

    Article  CAS  Google Scholar 

  41. Guo Z, Song NR, Moon JH, Kim M, Jun EJ, Choi J, Lee JY, Bielawski CW, Sessler JL, Yoon J. J Am Chem Soc, 2012, 134: 17846–17849

    Article  CAS  Google Scholar 

  42. Wang YB, Wang YM, Zhang WZ, Lu XB. J Am Chem Soc, 2013, 135: 11996–12003

    Article  CAS  Google Scholar 

  43. Wang YB, Sun DS, Zhou H, Zhang WZ, Lu XB. Green Chem, 2015, 17: 4009–4015

    Article  CAS  Google Scholar 

  44. Crocker RD, Nguyen TV. Chem Eur J, 2016, 22: 2208–2213

    Article  CAS  Google Scholar 

  45. Saptal VB, Bhanage BM. ChemSusChem, 2016, 9: 1980–1985

    Article  CAS  Google Scholar 

  46. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T. Org Lett, 2010, 12: 5728–5731

    Article  CAS  Google Scholar 

  47. Wang YB, Sun DS, Zhou H, Zhang WZ, Lu XB. Green Chem, 2014, 16: 2266–2272

    Article  Google Scholar 

  48. Buß F, Mehlmann P, Mück-Lichtenfeld C, Bergander K, Dielmann F. J Am Chem Soc, 2016, 138: 1840–1843

    Article  Google Scholar 

  49. Zheng J, Cai J, Lin JH, Guo Y, Xiao JC. Chem Commun, 2013, 49: 7513–7515

    Article  CAS  Google Scholar 

  50. Walsh AD. J Chem Soc, 1953: 2260–2266

    Google Scholar 

  51. Spielfiedel A, Feautrier N, Cossart-Magos C, Chambaud G, Rosmus P, Werner HJ, Botschwina P. J Chem Phys, 1992, 97: 8382–8388

    Article  CAS  Google Scholar 

  52. Mohammed HH, Fournier J, Deson J, Vermeil C. Chem Phys Lett, 1980, 73: 315–318

    Article  CAS  Google Scholar 

  53. Cossart-Magos C, Launay F, Parkin JE. Mol Phys, 1992, 75: 835–856

    Article  CAS  Google Scholar 

  54. Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD. Chem Commun, 2003, 28–29

    Google Scholar 

  55. Theuergarten E, Bannenberg T, Walter MD, Holschumacher D, Freytag M, Daniliuc CG, Jones PG, Tamm M. Dalton Trans, 2014, 43: 1651–1662

    Article  CAS  Google Scholar 

  56. Zhou H, Wang GX, Zhang WZ, Lu XB. ACS Catal, 2015, 5: 6773–6779

    Article  CAS  Google Scholar 

  57. Shaikh AAG, Sivaram S. Chem Rev, 1996, 96: 951–976

    Article  CAS  Google Scholar 

  58. Clements JH. Ind Eng Chem Res, 2003, 42: 663–674

    Article  CAS  Google Scholar 

  59. Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem Rev, 2010, 110: 4554–4581

    Article  Google Scholar 

  60. Zhou H, Wang YM, Zhang WZ, Qu JP, Lu XB. Green Chem, 2011, 13: 644–650

    Article  CAS  Google Scholar 

  61. Kayaki Y, Yamamoto M, Ikariya T. Angew Chem Int Ed, 2009, 48: 4194–4197

    Article  CAS  Google Scholar 

  62. Ajitha MJ, Suresh CH. Tetrahedron Lett, 2011, 52: 5403–5406

    Article  CAS  Google Scholar 

  63. Whiteoak C, Kleij A. Synlett, 2013, 24: 1748–1756

    Article  CAS  Google Scholar 

  64. Martín C, Fiorani G, Kleij AW. ACS Catal, 2015, 5: 1353–1370

    Article  Google Scholar 

  65. Phoon CW, Abell C. Tetrahedron Lett, 1998, 39: 2655–2658

    Article  CAS  Google Scholar 

  66. Fluit AC. J Antimicrob Chemoth, 2002, 50: 271–276

    Article  CAS  Google Scholar 

  67. Gawley RE, Campagna SA, Santiago M, Ren T. Tetrahedron-Asymmetr, 2002, 13: 29–36

    Article  CAS  Google Scholar 

  68. Hoellman DB, Lin G, Ednie LM, Rattan A, Jacobs MR, Appelbaum PC. Antimicrob Agents Ch, 2003, 47: 1148–1150

    Article  CAS  Google Scholar 

  69. Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS. J Biol Chem, 2003, 278: 21972–21979

    Article  CAS  Google Scholar 

  70. Seayad J, Seayad AM, Ng JKP, Chai CLL. ChemCatChem, 2012, 4: 774–777

    Article  CAS  Google Scholar 

  71. Toullec P, Carbayo Martin A, Gio-Batta M, Bruneau C, Dixneuf PH. Tetrahedron Lett, 2000, 41: 5527–5531

    Article  CAS  Google Scholar 

  72. Ochiai B, Endo T. Prog Polymer Sci, 2005, 30: 183–215

    Article  CAS  Google Scholar 

  73. Tommasi I, Sorrentino F. Tetrahedron Lett, 2009, 50: 104–107

    Article  CAS  Google Scholar 

  74. Yan ZE, Huo RP, Guo L, Zhang X. J Mol Model, 2016, 22: 94

    Article  Google Scholar 

  75. Li W, Yang N, Lyu Y. J Org Chem, 2016, 81: 5303–5313

    Article  CAS  Google Scholar 

  76. Fontaine FG, Courtemanche MA, Légaré MA. Chem Eur J, 2014, 20: 2990–2996

    Article  CAS  Google Scholar 

  77. Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem, 2015, 17: 157–168

    Article  CAS  Google Scholar 

  78. Yang Y, Xu M, Song D. Chem Commun, 2015, 51: 11293–11296

    Article  CAS  Google Scholar 

  79. Riduan SN, Zhang Y, Ying JY. Angew Chem Int Ed, 2009, 48: 3322–3325

    Article  CAS  Google Scholar 

  80. Riduan SN, Ying JY, Zhang Y. ChemCatChem, 2013, 5: 1490–1496

    Article  CAS  Google Scholar 

  81. Huang F, Lu G, Zhao L, Li H, Wang ZX. J Am Chem Soc, 2010, 132: 12388–12396

    Article  CAS  Google Scholar 

  82. Zhou Q, Li Y. J Am Chem Soc, 2015, 137: 10182–10189

    Article  CAS  Google Scholar 

  83. Zhang X, Jia YB, Lu XB, Li B, Wang H, Sun LC. Tetrahedron Lett, 2008, 49: 6589–6592

    Article  CAS  Google Scholar 

  84. Ren WM, Liu Y, Lu XB. J Org Chem, 2014, 79: 9771–9777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21402021), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13008). X. B. Lu gratefully acknowledges the Chang Jiang Scholars Program (T2011056) from Ministry of Education, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhou or Xiaobing Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Lu, X. Lewis base-CO2 adducts as organocatalysts for CO2 transformation. Sci. China Chem. 60, 904–911 (2017). https://doi.org/10.1007/s11426-016-0442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0442-5

Keywords

Navigation