Skip to main content
Log in

Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the present work, it was found that aqueous solution of a hydrophilic ionic liquid (IL), 1-butyl-3-methylimidazolium dicyanamide ([C4mim][N(CN)2]), could be separated into an aqueous two-phase system (ATPS) by inorganic salts such as K2HPO4 and K3PO4. The top phase is IL-rich, while the bottom phase is phosphate-rich. It was shown that 82.7%–100% bovine serum albumin (BSA) could be enriched into the top phase and almost quantitative saccharides (arabinose, glucose, sucrose, raffinose or dextran) were preferentially extracted into the bottom phase in a single-step extraction by [C4mim][N(CN)2] + K2HPO4 ATPS. The extraction efficiency of BSA from the aqueous saccharide solutions was influenced by the molecular structure of saccharides. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were combined to investigate the microstructure of the IL-rich top phase and the possible mechanism for the selective separation. It is suggested that the formation of the IL aggregate and the IL aggregate-BSA complex plays a significant role in the separation of BSA from aqueous saccharide solutions. This is the first example for the selective separation by ILs-based ATPSs. It is expected that these findings would have potential applications in bio-analysis, separation, and IL recycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev, 1999, 99: 2071–2084

    Article  CAS  Google Scholar 

  2. Wasserscheid P, Keim W. Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed, 2000, 39: 3772–3789

    CAS  Google Scholar 

  3. Dupont J, de Souza RF, Suarez PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev, 2002, 102: 3667–3692

    Article  CAS  Google Scholar 

  4. Pandey S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal Chim Acta, 2006, 556: 38–45

    Article  CAS  Google Scholar 

  5. Han XX, Armstrong DW. Ionic liquids in separations. Acc Chem Res, 2007, 40: 1079–1086

    Article  CAS  Google Scholar 

  6. Shimojo KNK, Kamiya N, Goto M. Crown ether-mediated extraction and functional conversion of cytochrome c in ionic liquids. Biomacromolecules, 2006, 7: 2–5

    Article  CAS  Google Scholar 

  7. Baskir JN, Hatton TA, Suter UW. Protein partitioning in two-phase aqueous polymer systems. Biotechnol Bioeng, 1989, 34: 541–558

    Article  CAS  Google Scholar 

  8. Hatti-Kaul R. Aqueous Two-Phase Systems: A General Overview in Aqueous Two-Phase Systems: Methods and Protocols. New Jersey: Human Press, 2000. 1–10

    Google Scholar 

  9. Andrews BA, Schmidt AS, Asenjo JA. Correlation for the partition behavior of proteins in aqueous two-phase systems: Effect of surface hydrophobicity and charge. Biotechno Bioeng, 2005, 90: 380–390

    Article  CAS  Google Scholar 

  10. Cole KD. Purification of plasmid and high molecular mass DNA using PEG-salt two phase extraction. Biotechniques, 1991, 11: 18–24

    CAS  Google Scholar 

  11. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD. Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc, 2003, 125: 6632–6633

    Article  CAS  Google Scholar 

  12. He CY, Li SH, Liu HW, Li K, Liu F. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J Chromatogr A, 2005, 1082: 143–149

    Article  CAS  Google Scholar 

  13. Neves CMSS, Ventura SPM, Freire MG, Marrucho IM, Coutinho JAP. Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J Phys Chem B, 2009, 113: 5194–5199

    Article  CAS  Google Scholar 

  14. Li SH, He CY, Liu HW, Li K, Liu F. Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J Chromatogr B, 2005, 826: 58–62

    Article  CAS  Google Scholar 

  15. Ventura SPM, Neves CMSS, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP. Evaluation of anion influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J Phys Chem B, 2009, 113: 9304–9310

    Article  CAS  Google Scholar 

  16. Jiang YY, Xia HS, Guo C, Mahmood I, Liu HZ. Phenomena and mechanism for separation and recovery of penicillin in ionic liquids aqueous solution. Ind Eng Chem Res, 2007, 46: 6303–6312

    Article  CAS  Google Scholar 

  17. Du Z, Yu YL, Wang JH. Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system. Chem Eur J, 2007, 13: 2130–2137

    Article  CAS  Google Scholar 

  18. Pei YC, Wang JJ, Wu K, Xuan XP, Lu XJ. Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Tech, 2009, 64: 288–295

    Article  CAS  Google Scholar 

  19. Cao Q, Quan L, He CY, Li N, Li K, Liu F. Partition of horseradish peroxidase with maintained activity in aqueous biphasic system based on ionic liquid. Talanta, 2008, 77: 160–165

    Article  CAS  Google Scholar 

  20. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem, 2001, 3: 156–164

    Article  CAS  Google Scholar 

  21. Liu QB, Janssen MHA, Rantwijk FV, Sheldon RA. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem, 2005, 7: 39–42

    Article  CAS  Google Scholar 

  22. Pei YC, Wang JJ, Liu L, Wu K, Zhao Y. Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts. J Chem Eng Data, 2007, 52: 2026–2031

    Article  CAS  Google Scholar 

  23. Michel D, Gilles KA, Hamilton JK, Rebers PA, Fred S. Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28: 350–356

    Article  Google Scholar 

  24. Bridges NJ, Gutowski KE, Rogers RD. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS). Green Chem, 2007, 9: 177–183

    Article  CAS  Google Scholar 

  25. Zafarani-Moattar MT, Hamzehzadeh S. Liquid-liquid equilibria of aqueous two-phase systems containing 1-butyl-3-methylimidazolium bromide and potassium phosphate or dipotassium hydrogen phosphate at 298.15 K. J Chem Eng Data, 2007, 52: 1686–1692

    Article  CAS  Google Scholar 

  26. Marcus Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans, 1991, 87: 2995–2999

    Article  CAS  Google Scholar 

  27. Zasllavsky BY, Miheeva LM, Mesteckina NM, Rogozhin SV. Physico-chemical factors governing partition behaviour of solutes and particles in aqueous polymeric biphasic systems. II. Effect of ionic composition on the hydration properties of the phases. J Chromatogr A, 1982, 253: 149–158

    Article  Google Scholar 

  28. Constantinescu D, Herrmann C, Weingärtner H. Protein denaturation by ionic liquids and the Hofmeister series: a case study of aqueous solutions of Ribonuclease A. Angew Chem Int Ed, 2007, 46: 1–4

    Article  Google Scholar 

  29. Zhao H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B, 2005, 37: 16–25

    Article  CAS  Google Scholar 

  30. Wu B, Zhang YM, Wang HP. Phase behavior for ternary systems composed of ionic liquid + saccharides + water. J Phys Chem B, 2008, 112: 6426–6429

    Article  CAS  Google Scholar 

  31. Galema SA, Engberts JB, Blandamer MJ. Stereochemical aspects of the hydration of carbohydrates. Kinetic medium effects of monosaccharides on a water-catalyzed hydrolysis reaction. J Am Chem Soc, 1990, 112: 9665–9666

    Article  CAS  Google Scholar 

  32. Chang SC, Weaver MJ. In situ infrared spectroscopy at single-crystal metal electrodes: An emerging link between electrochemical and ultrahigh-vacuum surface science. J Phys Chem, 1991, 95: 5391–5400

    Article  CAS  Google Scholar 

  33. Wang HY, Wang JJ, Zhang SB, Xuan XP. Structural effects of anions and cations on the aggregation behavior of ionic liquids in aqueous solutions. J Phys Chem B, 2008, 112: 16682–16689

    Article  CAS  Google Scholar 

  34. Michalis A, Panagiotis S, Elefteria N, Herve R, Apostolos KR, Georgios T. Molecular size determination of a membrane protein in surfactants by light scattering. Biochimica et Biophysica Acta, 2003, 1615: 69–76

    Article  Google Scholar 

  35. Spelzini D, Peleteiro J, Pico G, Farruggia B. Polyethyleneglycolpepsin interaction and its relationship with protein partitioning in aqueous two-phase systems. Colloids and Surfaces B, 2008, 67: 151–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianJi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, Y., Li, Z., Liu, L. et al. Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci. China Chem. 53, 1554–1560 (2010). https://doi.org/10.1007/s11426-010-4025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4025-9

Keywords

Navigation