Skip to main content
Log in

Electrochemical deposition of nano-structured ZnO on the nanocrystalline TiO2 film and its characterization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

One-dimensional structure of ZnO nanorod arrays on nanocrystalline TiO2/ITO conductive glass substrates has been fabricated by cathodic reduction electrochemical deposition methods in the three-electrode system, with zinc nitrate aqueous solution as the electrolyte, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence (PL) spectra. The effects of film substrates, electrolyte concentration, deposition time, and methenamine (HMT) addition on ZnO deposition and its luminescent property were investigated in detail. The results show that, compared with on the ITO glass substrate, ZnO is much easily achieved by electrochemical deposition on the TiO2 nanoparticle thin films. ZnO is hexagonally structured wurtzite with the c-axis preferred growth, and further forms nanorod arrays vertically on the substrates. It is favorable to the growth of ZnO to extend the deposition time, to increase the electrolyte concentration, and to add a certain amount of HMT in the system, consequently improving the crystallinity and orientation of ZnO arrays. It is demonstrated that the obtained ZnO arrays with high crystallinity and good orientation display strong band-edge UV (375 nm) and weak surface-state-related green (520 nm) emission peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li GR, Dawa CR, Bu Q, Lu XH, Ke ZH. Electrochemical self-assembly of ZnO nanoporous structures. J Phys Chem C, 2007, 111: 1919–1923

    Article  CAS  Google Scholar 

  2. Sun SH, Meng GW, Zhang GX, Zhang LD. Controlled growth and optical properties of one-cimensional ZnO nanostructures on SnO2 nanobelts. Cryst Growth Des, 2007. 7: 1988–1991

    Article  CAS  Google Scholar 

  3. Kim KK, Song JH, Jung HJ. The grain size effects on the photoluminescence of ZnO/α-A12O3 grown by radio-frequency magnetron sputtering. J Appl Phys, 2000, 87: 3573–3579

    Article  CAS  Google Scholar 

  4. Wang QP, Zhang XJ, Wang GQ, Chen SH, Wu XH, Ma HL. Influence of excitation light wavelength on the photoluminescence properties for ZnO films prepared by magnetron sputtering. Appl Surf Sci, 2008, 254: 5100–5104

    Article  CAS  Google Scholar 

  5. Minami T, Yamamoto T, Miyata T. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering. Thin Solid Films, 2000, 366: 63–68

    Article  CAS  Google Scholar 

  6. Ma RZ, Bando Y, Sato T. Nanowires of metal borates. Appl Phys Lett, 2002, 81: 3467–3469

    Article  CAS  Google Scholar 

  7. Tabata H, Saeki M, Guo SL. Control of the electric and magnetic properties of ZnO films. Physica B, 2001, 308–310: 993–998

    Article  Google Scholar 

  8. Sakurai K, Kanehiro M. Effects of oxygen plasma condition on MBE growth of ZnO. J Cryst Growth, 2000, 209: 522–525

    Article  CAS  Google Scholar 

  9. Park SH, Suzuki H, Minegishi T, Fujimoto G, Park JS, Im IH, Oh DC, Cho MW, Yao T. Low-temperature growth of high-quality ZnO layers by surfactant-mediated molecular-beam epitaxy. J Cryst Growth, 2007, 309: 158–163

    Article  CAS  Google Scholar 

  10. Zhang XA, Zhang JW, Zhang WF, Wang D, Bi Z, Bian XM, Hou X. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy. Thin Solid Films, 2008, 516: 3305–3308

    Article  CAS  Google Scholar 

  11. Xue SB, Zhang X, Huang RH, Zhuang Z. Effects of the sputtering time of ZnO buffer layer on the quality of GaN thin films. Appl Surf Sci, 2008, 254: 6766–6769

    Article  CAS  Google Scholar 

  12. Zhao JL, Li XM, Bian JM, Yu WD, Zhang CY. Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties. Appl Surf Sci, 2005, 280: 495–501

    CAS  Google Scholar 

  13. Kim K-S, Kim HW, Lee CM. Effect of growth temperature on ZnO thin film deposited on SiO2 substrate. Mater Sci Eng B, 2003, 98: 135–139

    Article  CAS  Google Scholar 

  14. Wang FF, Liu RB, Pan AL, Wang TH, Zou BS. The optical properties of ZnO sheets electrodeposited on ITO glass. Mater Lett, 2007, 61: 2000–2003

    Article  CAS  Google Scholar 

  15. King SL, Gardeniers JGE, Boyd IW. Pulsed-laser deposited ZnO for device application. Appl Surf Sci, 1996, 96–98: 811–818

    Article  Google Scholar 

  16. Fan XM, Lian JS, Guo ZX, Lu HJ. Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates. Appl Surf Sci, 2005, 239: 176–181

    Article  CAS  Google Scholar 

  17. Kim KS, Kim HW. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Physica B, 2003, 328: 368–371

    Article  CAS  Google Scholar 

  18. Park WI, Yi GC, Kim M, Pennycook SJ. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv Mater, 2002, 14: 1841–1843

    Article  CAS  Google Scholar 

  19. Ogata K, Maejima K, Fujita S, Fujita S. Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy. J Cryst Growth, 2003, 248: 25–30

    Article  CAS  Google Scholar 

  20. El-Yadouni A, Boudrioua A, Loulergue JC, Sallet V, Triboulet R. Growth and optical characterization of ZnO thin films deposited on sapphire substrate by MOCVD technique. Opt Mater, 2005, 27: 1391–1395

    Article  CAS  Google Scholar 

  21. Zhang YT, Du GT, Liu BY, Zhu HC, Li WC, Liu DL, Yang SR. Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by low-pressure MOCVD. J Cryst Growth, 2004, 262(1–4): 456–460

    Article  CAS  Google Scholar 

  22. Cao BQ, Li Y, Duan GT, Cai WP. Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst Growth Des, 2006, 6: 1091–1095

    Article  CAS  Google Scholar 

  23. Xu F, Guo Y, Liao Q, Zhang JP, Xu DS. Morphological control of ZnO nanostructures by electrodeposition. J Phys Chem B, 2005, 109, 13519–13522

    Article  CAS  Google Scholar 

  24. Song S, Jing LQ, Li SD, Fu HG, Luan YB. Superhydrophilic anatase TiO2 film with the micro- and nanometer-scale hierarchical surface structure. Mater Lett, 2008, 62: 3503–3505

    Article  CAS  Google Scholar 

  25. Yang AL, Cui ZL. Controlling the orientation of ZnO nanorod arrays using TiO2 thin film templates dip-coated by sol-gel. J Nanopart Res, 2007, 9: 245–250

    Article  CAS  Google Scholar 

  26. Li QC, Kumar V, Li Y, Zhang HT, Marks TJ, Chang RPH. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater, 2005, 17: 1001–1006

    Article  CAS  Google Scholar 

  27. Cheng B, Shi WS, Russell-Tanner JM, Zhang L, Samulski ET. Synthesis of variable-aspect-ratio, single-crystalline ZnO nanostructures. Inorg Chem, 2006, 45: 1208–1214

    Article  CAS  Google Scholar 

  28. Dev A, Kar S, Chakrabarty S, Chaudhuri S. Optical and field emission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route. Nanotechnology, 2006, 17: 1533–1540

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiQiang Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Fu, W., Jing, L. et al. Electrochemical deposition of nano-structured ZnO on the nanocrystalline TiO2 film and its characterization. Sci. China Chem. 53, 1732–1736 (2010). https://doi.org/10.1007/s11426-010-4016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4016-x

Keywords

Navigation