Skip to main content
Log in

Catalytic pyrolysis of Pubescens to phenols over Ni/C catalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The pyrolysis of Pubescens over Ni/C catalyst was studied at 350 °C in H2 flow. The presence of Ni/C catalyst efficiently improved the degradation of raw materials, and produced bio-oil with high content of phenols but low contents of acetic acid, furfural and water. In the reaction, Ni/C catalyst plays the role of catalytic decomposition and catalytic hydrogenation. The existence of the carbon carrier favors the formation of active Ni in small sizes with more defects, which results in high catalytic activity of Ni in biomass decomposition and selective production of phenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: A critical review. Energ Fuel, 2006, 20(3): 848–889

    Article  CAS  Google Scholar 

  2. Lu Q, Zhu XF, Li QX, Guo QX, Zhu QS. Biomass fast pyrolysis for liquid fuels. Prog Chem, 2007, 19(7/8): 1064–1071

    CAS  Google Scholar 

  3. Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energ Fuel, 2006, 20(1): 388–393

    Article  CAS  Google Scholar 

  4. Liu Q, Wang SR, Zheng Y, Luo ZY, Cen KF. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrol, 2008, 82(1): 170–177

    Article  CAS  Google Scholar 

  5. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed, 2009, 48: 3987–3990

    Article  CAS  Google Scholar 

  6. Qi WY, Hu CW, Li GY, Guo LH, Yang Y, Luo J, Miao X, Du Y. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chem, 2006, 8: 183–190

    Article  CAS  Google Scholar 

  7. Lin YC, Huber GW. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ Sci, 2009, 2: 68–80

    Article  CAS  Google Scholar 

  8. Stöcker M. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed, 2008, 47: 9200–9211

    Article  Google Scholar 

  9. Zhang YH, Wang AQ, Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun, 2010, 46(6): 862–864

    Article  CAS  Google Scholar 

  10. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gärtner CA, Dumesic JA. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322: 417–421

    Article  CAS  Google Scholar 

  11. Li JF, Yan R, Xiao B, Liang DT, Lee DH. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energ Fuel, 2008, 22: 16–23

    Article  CAS  Google Scholar 

  12. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ. Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev, 2009, 38: 481–494

    CAS  Google Scholar 

  13. Atul S, Ikuo S, Hiroyuki N, Kouichi M. Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds. Fuel, 2007, 86: 915–920

    Article  CAS  Google Scholar 

  14. Puente GDL, Gil A, Pis JJ, Grange P. Effects of support surface chemistry in hydrodeoxygenation reactions over CoMo/activated carbon sulfided catalysts. Langmuir, 1999, 15(18): 5800–5806

    Article  Google Scholar 

  15. Zhu LF, Guo B, Tang DY, Hu XK, Li GY, Hu CW. Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine. J Catal, 2007, 245: 446–455

    Article  CAS  Google Scholar 

  16. Basagiannis AC, Verykios XE. Reforming reactions of acetic acid on nickel catalysts over a wide temperature range. Appl Catal A, 2006, 308: 182–193

    Article  CAS  Google Scholar 

  17. Miao X, Luo J, Li GY, Hu CW. Catalytic pyrolysis of pubescens under H2 flow. Chemical Research and Application, 2007, 19(5): 507–512

    CAS  Google Scholar 

  18. Furimsky E. Catalytic hydrodeoxygenation. Appl Catal A-Gen, 2000, 199: 147–190

    Article  CAS  Google Scholar 

  19. Elliott DC, Hart TR. Catalytic hydroprocessing of chemical models for bio-oil. Energ Fuel, 2009, 23(2): 631–637

    Article  CAS  Google Scholar 

  20. Liu WW, Hu CW, Yang Y, Zhu LF, Tong DM. Effect of the interference instant of zeolite HY catalyst on the pyrolysis of Pubescens. Chin J Chem Eng, 2010, 18(2): 351–354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangWei Hy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Li, J., Shen, D. et al. Catalytic pyrolysis of Pubescens to phenols over Ni/C catalyst. Sci. China Chem. 53, 1487–1491 (2010). https://doi.org/10.1007/s11426-010-4015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4015-y

Keywords

Navigation