Skip to main content

Advertisement

Log in

Hydrodeoxygenation of Vanillin over Ni2P/Zeolite Catalysts: Role of Surface Acid Density

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Developing efficient catalysts for biomass hydrodeoxygenation into high-quality biofuels and chemicals is a current topic of great interest. In this study, Ni2P catalysts supported on different zeolites (MCM-41, HY, Hβ) were fabricated for vanillin hydrodeoxygenation by one-pot method instead of temperature-programmed reduction (TPR). The prepared catalysts were characterized using XRD, XPS, NH3-TPD and N2 physisorption. The results showed that the support has a significant influence on the reactivity of the Ni2P-based catalyst. The Ni2P/HY catalyst contains a higher acid site density, which leads to the almost complete conversion of vanillin to the quantitative yield of 2-methoxy-4-methylphenol (MMP) via direct hydrogenolysis path at 220 °C, 5 h and 2 MPa of H2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hoang AT, Ong HC, Fattah IMR et al (2021) Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol 223:106997

    Article  CAS  Google Scholar 

  2. Stucchi M, Cattaneo S, Cappella A et al (2020) Catalytic oxidation of methoxy substituted benzyl alcohols as model for lignin valorisation. Catal Today 357:15–21

    Article  CAS  Google Scholar 

  3. Bykova MV, Ermakov DY, Kaichev VV et al (2012) Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: guaiacol hydrodeoxygenation study. Appl Catal B 113–114:296–307

    Article  Google Scholar 

  4. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94

    Article  CAS  Google Scholar 

  5. Zhang Q, Chang J, Wang T et al (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manage 48:87–92

    Article  CAS  Google Scholar 

  6. Shu R, Lin B, Wang C et al (2019) Upgrading phenolic compounds and bio-oil through hydrodeoxygenation using highly dispersed Pt/TiO2 catalyst. Fuel 239:1083–1090

    Article  CAS  Google Scholar 

  7. Tian S, Wang Z, Gong W et al (2018) Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J Am Chem Soc 140:11161–11164

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Abdelouahed L, Xu J et al (2021) Catalytic hydrodeoxygenation of model bio-oils using HZSM-5 and Ni2P/HZM-5 catalysts: comprehension of interaction. Chem Eng Technol 44:2126–2138

    Article  CAS  Google Scholar 

  9. Zhang L, Shang N, Gao S et al (2020) Atomically dispersed co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catal 10:8672–8682

    Article  CAS  Google Scholar 

  10. Zhai Y, Chu M, Shang N et al (2020) Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels. Appl Surf Sci 506:144681

    Article  CAS  Google Scholar 

  11. Gao Z, Liu F, Wang L et al (2019) Highly efficient transfer hydrodeoxygenation of vanillin over Sn4+-induced highly dispersed Cu-based catalyst. Appl Surf Sci 480:548–556

    Article  CAS  Google Scholar 

  12. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46

    Article  CAS  Google Scholar 

  13. Robinson AM, Hensley JE, Medlin JW (2016) Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal 6:5026–5043

    Article  CAS  Google Scholar 

  14. Santos JL, Mäki-Arvela P, Wärnå J et al (2020) Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: catalytic behaviour. Appl Catal B 268:118425

    Article  CAS  Google Scholar 

  15. Mukherjee D, Singuru R, Venkataswamy P et al (2019) Ceria promoted Cu-Ni/SiO2 catalyst for selective hydrodeoxygenation of vanillin. ACS Omega 4:4770–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao C, Liu X, Ren Y et al (2018) Catalytic deoxygenation of vanillin over layered double hydroxide supported Pd catalyst. J Ind Eng Chem 68:380–386

    Article  CAS  Google Scholar 

  17. Nie R, Yang H, Zhang H et al (2017) Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles. Green Chem 19:3126–3134

    Article  CAS  Google Scholar 

  18. Yue X, Zhang L, Sun L et al (2021) Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst. Appl Catal B 293:120243

    Article  CAS  Google Scholar 

  19. Wang D, Gong W, Zhang J et al (2021) Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water. Chin J Catal 42:2027–2037

    Article  CAS  Google Scholar 

  20. Shao Y, Wang T, Sun K et al (2021) Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green Energy Environ 6:557–566

    Article  Google Scholar 

  21. Pongthawornsakun B, Kaewsuanjik P, Kittipreechakun P et al (2020) Deposition of Pt nanoparticles on TiO2 by pulsed direct current magnetron sputtering for selective hydrogenation of vanillin to vanillyl alcohol. Catal Today 358:51–59

    Article  CAS  Google Scholar 

  22. Li T, Li H, Li C (2022) Hydrodeoxygenation of vanillin to creosol under mild conditions over carbon nanospheres supported palladium catalysts: influence of the carbon defects on surface of catalysts. Fuel 310:122432

    Article  CAS  Google Scholar 

  23. Zong R, Li H, Ding W et al (2021) Highly dispersed Pd on zeolite/carbon nanocomposites for selective hydrodeoxygenation of biomass-derived molecules under mild conditions. ACS Sustain Chem Eng 9:9891–9902

    Article  CAS  Google Scholar 

  24. Kim H, Yang S, Lim YH et al (2022) Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: complete hydrodeoxygenation of vanillin. J Hazard Mater 423:126525

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y-Q, Xiao L-P, Xiao W-Z et al (2022) Nitrogen-doped carbon anchored ruthenium nanoparticles for biofuel upgrade. Fuel 314:123100

    Article  CAS  Google Scholar 

  26. Fan R, Chen C, Han M et al (2018) Highly dispersed copper nanoparticles supported on activated carbon as an efficient catalyst for selective reduction of vanillin. Small 14:e1801953

    Article  PubMed  Google Scholar 

  27. Liu M, Zhang J, Zheng L et al (2020) significant promotion of surface oxygen vacancies on bimetallic coni nanocatalysts for hydrodeoxygenation of biomass-derived vanillin to produce methylcyclohexanol. ACS Sustain Chem Eng 8:6075–6089

    Article  CAS  Google Scholar 

  28. Ding W, Li H, Zong R et al (2021) Controlled hydrodeoxygenation of biobased ketones and aldehydes over an alloyed Pd–Zr catalyst under mild conditions. ACS Sustain Chem Eng 9:3498–3508

    Article  CAS  Google Scholar 

  29. Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436

    Article  CAS  Google Scholar 

  30. Gutiérrez-Rubio S, Berenguer A, Přech J et al (2020) Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catal Today 345:48–58

    Article  Google Scholar 

  31. Yu Z, Yao K, Wang Y et al (2021) Kinetic investigation of phenol hydrodeoxygenation over unsupported nickel phosphides. Catal Today 371:179–188

    Article  CAS  Google Scholar 

  32. Wang HH, Liu ZL, Song YC et al (2020) High-performance evolution of Ni2P@Hierarchical HZSM-5 as the guaiacol hydrodeoxygenation catalyst. ACS Omega 5:21330–21337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leal Mendes F, Teixeira da Silva V, Edral Pacheco M et al (2020) Hydrotreating of fast pyrolysis oil: a comparison of carbons and carbon-covered alumina as supports for Ni2P. Fuel 264:116764

    Article  CAS  Google Scholar 

  34. Berenguer A, Bennett JA, Hunns J et al (2018) Catalytic hydrodeoxygenation of m-cresol over Ni2P/hierarchical ZSM-5. Catal Today 304:72–79

    Article  CAS  Google Scholar 

  35. Zhao HY, Li D, Bui P et al (2011) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391:305–310

    Article  CAS  Google Scholar 

  36. Wang S, Xu D, Chen Y et al (2020) Hydrodeoxygenation of anisole to benzene over an Fe2P catalyst by a direct deoxygenation pathway. Catal Sci Technol 10:3015–3023

    Article  CAS  Google Scholar 

  37. Bui P, Cecilia JA, Oyama ST et al (2012) Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal 294:184–198

    Article  CAS  Google Scholar 

  38. Shamanaev IV, Deliy IV, Gerasimov EY et al (2020) Enhancement of HDO Activity of MoP/SiO2 catalyst in physical mixture with alumina or zeolites. Catalysts 10:45

    Article  CAS  Google Scholar 

  39. Whiffen VML, Smith KJ (2010) Hydrodeoxygenation of 4-Methylphenol over unsupported MoP, MoS2, and MoOx catalysts. Energy Fuels 24:4728–4737

    Article  CAS  Google Scholar 

  40. Yang Y, Chen J, Shi H (2013) Deoxygenation of methyl laurate as a model compound to hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 catalysts with different dispersions. Energy Fuels 27:3400–3409

    Article  CAS  Google Scholar 

  41. Akhmetzyanova U, Tišler Z, Sharkov N et al (2019) Molybdenum nitrides, carbides and phosphides as highly efficient catalysts for the (hydro)deoxygenation reaction. ChemistrySelect 4:8453–8459

    Article  CAS  Google Scholar 

  42. Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E et al (2013) Oxygen-removal of dibenzofuran as a model compound in biomass derived bio-oil on nickel phosphide catalysts: role of phosphorus. Appl Catal B 136–137:140–149

    Article  Google Scholar 

  43. Shi H, Chen J, Yang Y et al (2014) Catalytic deoxygenation of methyl laurate as a model compound to hydrocarbons on nickel phosphide catalysts: remarkable support effect. Fuel Process Technol 118:161–170

    Article  CAS  Google Scholar 

  44. Pan L, He Y, Niu M et al (2020) Benzene–toluene–xylene (BTX) from p-cresol by hydrodeoxygenation over nickel phosphide catalysts with different supports. J Mater Sci 55:1614–1626

    Article  CAS  Google Scholar 

  45. Li K, Wang R, Chen J (2011) Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy Fuels 25:854–863

    Article  CAS  Google Scholar 

  46. Li G, Li H (2021) Enhancing activity of Ni2P-based catalysts by a yolk-shell structure and transition metal-doping for catalytic transfer hydrogenation of vanillin. Energy Fuels 35:4158–4168

    Article  CAS  Google Scholar 

  47. Wongnongwa Y, Jungsuttiwong S, Pimsuta M et al (2020) Mechanistic and thermodynamic insights into the deoxygenation of palm oils using Ni2P catalyst: a combined experimental and theoretical study. Chem Eng J 399:125586

    Article  CAS  Google Scholar 

  48. Inocêncio CVM, de Souza PM, Rabelo-Neto RC et al (2021) A systematic study of the synthesis of transition metal phosphides and their activity for hydrodeoxygenation of phenol. Catal Today 381:133–142

    Article  Google Scholar 

  49. Layan Savithra GH, Muthuswamy E, Bowker RH et al (2013) Rational design of nickel phosphide hydrodesulfurization catalysts: controlling particle size and preventing sintering. Chem Mater 25:825–833

    Article  CAS  Google Scholar 

  50. Yan K, Li Y, Zhang X et al (2015) Effect of preparation method on Ni2P/SiO2 catalytic activity for NaBH4 methanolysis and phenol hydrodeoxygenation. Int J Hydrogen Energy 40:16137–16146

    Article  CAS  Google Scholar 

  51. Li D, Senevirathne K, Aquilina L et al (2015) Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni5P4 and NiP2. Inorg Chem 54:7968–7975

    Article  CAS  PubMed  Google Scholar 

  52. Muthuswamy E, Savithra GHL, Brock SL (2011) synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles. ACS Nano 5:2402–2411

    Article  CAS  PubMed  Google Scholar 

  53. García-Muelas R, Li Q, López N (2018) Initial stages in the formation of nickel phosphides. J Phys Chem B 122:672–678

    Article  PubMed  Google Scholar 

  54. Lu X, Baker MA, Anjum DH et al (2021) Ni2P nanoparticles embedded in mesoporous SiO2 for catalytic hydrogenation of SO2 to elemental S. ACS Appl Nano Mater 4:5665–5676

    Article  CAS  Google Scholar 

  55. Yoon KY, Jang Y, Park J et al (2008) Synthesis of uniform-sized bimetallic iron–nickel phosphide nanorods. J Solid State Chem 181:1609–1613

    Article  CAS  Google Scholar 

  56. Henkes AE, Vasquez Y, Schaak RE (2007) Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J Am Chem Soc 129:1896–1897

    Article  CAS  PubMed  Google Scholar 

  57. Henkes AE, Schaak RE (2007) Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem Mater 19:4234–4242

    Article  CAS  Google Scholar 

  58. Park J, Koo B, Yoon KY et al (2005) Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J Am Chem Soc 127:8433–8440

    Article  CAS  PubMed  Google Scholar 

  59. Zarchin R, Rabaev M, Vidruk-Nehemya R et al (2015) Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel 139:684–691

    Article  CAS  Google Scholar 

  60. Yao Y, Tian Y-J, Wu H-H et al (2015) Pt-promoted and Hβ zeolite-supported Ni2P catalysts for hydroisomerisation of n-heptane. Fuel Process Technol 133:146–151

    Article  CAS  Google Scholar 

  61. Guan Q, Wan F, Han F et al (2016) Hydrodeoxygenation of methyl palmitate over MCM-41 supported nickel phosphide catalysts. Catal Today 259:467–473

    Article  CAS  Google Scholar 

  62. Lan X, Hensen EJM, Weber T (2018) Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation. Appl Catal A 550:57–66

    Article  CAS  Google Scholar 

  63. Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215:208–219

    Article  CAS  Google Scholar 

  64. Sawhill SJ, Layman KA, Van Wyk DR et al (2005) Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support. J Catal 231:300–313

    Article  CAS  Google Scholar 

  65. Lehmann T, Wolff T, Hamel C et al (2012) Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach. Microporous Mesoporous Mater 151:113–125

    Article  CAS  Google Scholar 

  66. Davidson A, Tempere JF, Che M et al (1996) Spectroscopic studies of Nickel(II) and Nickel(III) species generated upon thermal treatments of nickel/ceria-supported materials. J Phys Chem 100:4919–4929

    Article  CAS  Google Scholar 

  67. Biesinger MC, Payne BP, Lau LWM et al (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–332

    Article  CAS  Google Scholar 

  68. Chen H, Tan J, Zhu Y et al (2016) An effective and stable Ni2P/TiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate. Catal Commun 73:46–49

    Article  CAS  Google Scholar 

  69. Liu S, Ren J, Zhu S et al (2015) Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance. J Catal 330:485–496

    Article  CAS  Google Scholar 

  70. Berenguer A, Sankaranarayanan TM, Gómez G et al (2016) Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation. Green Chem 18:1938–1951

    Article  CAS  Google Scholar 

  71. Lee Y-K, Oyama ST (2006) Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies. J Catal 239:376–389

    Article  CAS  Google Scholar 

  72. Zhang X, Tang W, Zhang Q et al (2017) Hydrocarbons production from lignin-derived phenolic compounds over Ni/SiO2 catalyst. Energy Procedia 105:518–523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged from the Scientific Research Projects of Hebei Education Department (QN2019050) and the Natural Science Foundation of Hebei Province (B2020202004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Yin or Hao Li.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Lang, M., Li, G. et al. Hydrodeoxygenation of Vanillin over Ni2P/Zeolite Catalysts: Role of Surface Acid Density. Catal Lett 153, 911–920 (2023). https://doi.org/10.1007/s10562-022-04021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04021-3

Keywords

Navigation