Skip to main content
Log in

Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic single crystals hold great promise for the development of organic semiconductor materials, because they could reveal the intrinsic electronic properties of these materials, providing high-performance electronic devices and probing the structure-property relationships. This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures, including vapor phase growth methods and solution-processed methods, and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: field-effect transistor with a polythiophene thin-film. Appl Phys Lett, 1986, 49: 1210–1212

    Article  CAS  Google Scholar 

  2. Lin YY, Gundlach DJ, Nelson SF, Jackson TN. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett, 1997, 18: 606–608

    Article  CAS  Google Scholar 

  3. Garnier F, Horowitz G, Peng XZ, Fichou D. Structural basis for high carrier mobility in conjugated oligomers. Synth Met, 1991, 45: 163–171

    Article  CAS  Google Scholar 

  4. Bao Z, Lovinger AJ, Dodabalapur A. Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl Phys Lett, 1996, 69: 3066–3068

    Article  CAS  Google Scholar 

  5. Bao ZA, Lovinger AJ, Brown J. New air-stable n-channel organic thin film transistors. J Am Chem Soc, 1998, 120: 207–208

    Article  CAS  Google Scholar 

  6. Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT. Thin-Film morphology control in naphthalene-diimide-based semiconductors: High mobility n-type semiconductor for organic thin-film transistors. Chem Mater, 2008, 20: 7486–7491

    Article  CAS  Google Scholar 

  7. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss B MW, Spiering AJ H, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401: 685–688

    Article  CAS  Google Scholar 

  8. Baude PF, Ender DA, Haase MA, Kelley TW, Muyres DV, Theiss SD. Pentacene-based radio-frequency identification circuitry. Appl Phys Lett, 2003, 82: 3964–3966

    Article  CAS  Google Scholar 

  9. Rotzoll R, Mohapatra S, Olariu V, Wenz R, Grigas M, Dimmler K, Shchekin O, Dodabalapur A. Radio frequency rectifiers based on organic thin-film transistors. Appl Phys Lett, 2006, 88: 123502

    Article  Google Scholar 

  10. Huitema HEA, Gelinck GH, van der Putten J, Kuijk KE, Hart CM, Cantatore E, Herwig PT, van Breemen A, de Leeuw DM. Plastic transistors in active-matrix displays — The handling of grey levels by these large displays paves the way for electronic paper. Nature, 2001, 414: 599–599

    Article  CAS  Google Scholar 

  11. Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten J, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, De Leeuw DM. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3: 106–110

    Article  CAS  Google Scholar 

  12. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA, 2001, 98: 4835–4840

    Article  CAS  Google Scholar 

  13. Comiskey B, Albert JD, Yoshizawa H, Jacobson J. An electrophoretic ink for all-printed reflective electronic displays. Nature, 1998, 394: 253–255

    Article  CAS  Google Scholar 

  14. Sokolov AN, Roberts ME, Bao ZA. Fabrication of low-cost electronic biosensors. Materials Today, 2009, 12: 12–20

    Article  Google Scholar 

  15. Podzorov V, Pudalov VM, Gershenson ME. Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl Phys Lett, 2003, 82: 1739–1741

    Article  CAS  Google Scholar 

  16. Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM. Interface-controlled, high-mobility organic transistors. Adv Mater, 2007, 19: 688–692

    Article  CAS  Google Scholar 

  17. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science, 2004, 303: 1644–1646

    Article  CAS  Google Scholar 

  18. Haas S, Takahashi Y, Takimiya K, Hasegawa T. High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl Phys Lett, 2009, 95: 022111

    Article  Google Scholar 

  19. Tan L, Jiang W, Jiang L, Jiang SD, Wang ZH, Yan SK, Hu WP. Single crystalline microribbons of perylo[1,12-b,c,d]selenophene for high performance transistors. Appl Phys Lett, 2009, 94: 153306

    Article  Google Scholar 

  20. Molinari AS, Alves H, Chen Z, Facchetti A, Morpurgo AF. High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J Am Chem Soc, 2009, 131: 2462–2463

    Article  CAS  Google Scholar 

  21. Kloc C, Simpkins PG, Siegrist T, Laudise RA. Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene. J Cryst Growth, 1997, 182: 416–427

    Article  CAS  Google Scholar 

  22. Kloc C, Laudise RA. Vapor pressures of organic semiconductors: alpha-hexathiophene and alpha-quaterthiophene. J Cryst Growth, 1998, 193: 563–571

    Article  CAS  Google Scholar 

  23. Horowitz G, Garnier F, Yassar A, Hajlaoui R, Kouki F. Field-effect transistor made with a sexithiophene single crystal. Adv Mater, 1996, 8: 52–54

    Article  CAS  Google Scholar 

  24. Horowitz G, Bachet B, Yassar A, Lang P, Demanze F, Fave JL, Garnier F. Growth and characterization of sexithiophene single-crystals. Chem Mater, 1995, 7: 1337–1341

    Article  CAS  Google Scholar 

  25. Roberson LB, Kowalik J, Tolbert LM, Kloc C, Zeis R, Chi XL, Fleming R, Wilkins C. Pentacene disproportionation during sublimation for field-effect transistors. J Am Chem Soc, 2005, 127: 3069–3075

    Article  CAS  Google Scholar 

  26. Kim DH, Lee DY, Lee HS, Lee WH, Kim YH, Han JI, Cho K. High-mobility organic transistors based on single-crystalline microribbons of triisopropylisilylethynl pentacene via solution-phase self-assembly. Adv Mater, 2007, 19: 678–682

    Article  CAS  Google Scholar 

  27. Jiang L, Gao JH, Wang EJ, Li HX, Wang ZH, Hu WP. Organic single-crystalline ribbons of a rigid “H”-type anthracene derivative and high-performance, short-channel field-effect transistors of individual micro/nanometer-sized ribbons fabricated by an “organic ribbon mask” technique. Adv Mater, 2008, 20: 2735–2740

    Article  CAS  Google Scholar 

  28. Wang CL, Liu YL, Ji ZY, Wang EJ, Li RJ, Jiang H, Tang QX, Li HX, Hu WP. Cruciforms: Assembling single crystal micro- and nanostructures from one to three dimensions and their applications in organic field-effect transistors. Chem Mater, 2009, 21: 2840–2845

    Article  CAS  Google Scholar 

  29. Li RJ, Jiang L, Meng Q, Gao JH, Li HX, Tang QX, He M, Hu WP, Liu YQ, Zhu DB. Micrometer-sized organic single crystals, anisotropic transport, and field-effect transistors of a fused-ring thienoacene. Adv Mater, 2009, 21: 4492–4495

    Article  Google Scholar 

  30. Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. J Am Chem Soc, 2004, 126: 984–985

    Article  CAS  Google Scholar 

  31. Takahashi Y, Hasegawa T, Horiuchi S, Kumai R, Tokura Y, Saito G. High mobility organic field-effect transistor based on hexamethyl-enetetrathiafulvalene with organic metal electrodes. Chem Mater, 2007, 19: 6382–6384

    Article  CAS  Google Scholar 

  32. Sun YM, Tan L, Jiang SD, Qian HL, Wang ZH, Yan DW, Di CG, Wang Y, Wu WP, Yu G, Yan SK, Wang CR, Hu WP, Liu YQ, Zhu DB. High-performance transistor based on individual single-crystalline micrometer wire of perylo[1,12-b,c,d]thiophene. J Am Chem Soc, 2007, 129: 1882–1883

    Article  CAS  Google Scholar 

  33. Tang QX, Li HX, He M, Hu WP, Liu CM, Chen KQ, Wang C, Liu YQ, Zhu DB. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv Mater, 2006, 18: 65–68

    Article  CAS  Google Scholar 

  34. Xiao K, Li RJ, Tao J, Payzant EA, Ivanov IN, Puretzky AA, Hu WP, Geohegan DB. Metastable copper-phthalocyanine single-crystal nanowires and their use in fabricating high-performance field-effect transistors. Adv Funct Mater, 2009, 19: 3776–3780

    Article  CAS  Google Scholar 

  35. Li RJ, Li HX, Song YB, Tang QX, Liu YL, Xu W, Hu WP, Zhu DB. Micrometer- and nanometer-sized, single-crystalline ribbons of a cyclic triphenylamine dimer and their application in organic transistors. Adv Mater, 2009, 21: 1605–1608

    Article  Google Scholar 

  36. Ahmed E, Briseno AL, Xia Y, Jenekhe SA. High mobility single-crystal field-effect transistors from bisindoloquinoline semiconductors. J Am Chem Soc, 2008, 130: 1118–1119

    Article  CAS  Google Scholar 

  37. Tang QX, Tong YH, Li HX, Hu WP. Air/vacuum dielectric organic single crystalline transistors of copper-hexadecafluorophthlaocyanine ribbons. Appl Phys Lett, 2008, 92: 083309

    Article  Google Scholar 

  38. Tang QX, Li HX, Song YB, Xu W, Hu WP, Jiang L, Liu YQ, Wang XK, Zhu DB. In situ patterning of organic single-crystalline nanoribbons on a SiO2 surface for the fabrication of various architectures and high-quality transistors. Adv Mater, 2006, 18: 3010–3014

    Article  CAS  Google Scholar 

  39. Anthony JE, Eaton DL, Parkin SR. A road map to stable, soluble, easily crystallized pentacene derivatives. Org Lett, 2002, 4: 15–18

    Article  CAS  Google Scholar 

  40. Tang QX, Li HX, Liu YL, Hu WP. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. J Am Chem Soc, 2006, 128: 14634–14639

    Article  CAS  Google Scholar 

  41. Tang QX, Tong YH, Li HX, Ji ZY, Li LQ, Hu WP, Liu YQ, Zhu DB. High-performance air-stable bipolar field-effect transistors of organic single-crystalline ribbons with an air-gap dielectric. Adv Mater, 2008, 20: 1511–1515

    Article  CAS  Google Scholar 

  42. Zhang YJ, Tang QX, Li HX, Hu WP. Hybrid bipolar transistors and inverters of nanoribbon crystals. Appl Phys Lett, 2009, 94: 203304

    Article  Google Scholar 

  43. Briseno AL, Mannsfeld SCB, Ling MM, Liu SH, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao ZN. Patterning organic single-crystal transistor arrays. Nature, 2006, 444: 913–917

    Article  CAS  Google Scholar 

  44. Mannsfeld SCB, Briseno AL, Liu S, Reese C, Roberts ME, Bao Z. Selective nucleation of organic single crystals from vapor phase on nanoscopically rough surfaces. Adv Funct Mater, 2007, 17: 3545–3553

    Article  CAS  Google Scholar 

  45. Briseno AL, Aizenberg J, Han YJ, Penkala RA, Moon H, Lovinger AJ, Kloc C, Bao ZA. Patterned growth of large oriented organic semiconductor single crystals on self-assembled monolayer templates. J Am Chem Soc, 2005, 127: 12164–12165

    Article  CAS  Google Scholar 

  46. Liu SH, Wang WCM, Mannsfeld SCB, Locklin J, Erk P, Gomez M, Richter F, Bao ZN. Solution-assisted assembly of organic semicon-ducting single crystals on surfaces with patterned wettability. Langmuir, 2007, 23: 7428–7432

    Article  CAS  Google Scholar 

  47. Martin CR. Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res, 1995, 28: 61–68

    Article  CAS  Google Scholar 

  48. Park DH, Kim BH, Jang MG, Bae KY, Joo J. Characteristics and photoluminescence of nanotubes and nanowires of poly(3-methylthiophene). Appl Phys Lett, 2005, 86: 113116

    Article  Google Scholar 

  49. Han MG, Foulger SH. 1-dimensional structures of poly(3,4-ethyl-enedioxythiophene) (PEDOT): a chemical route to tubes, rods, thimbles, and belts. Chem Commun, 2005, 3092–3094

  50. Park DH, Kim BH, Jang MK, Bae KY, Lee SJ, Joo J. Synthesis and characterization of polythiophene and poly(3-methylthiophene) nanotubes and nanowires. Synth Met, 2005, 153: 341–344

    Article  CAS  Google Scholar 

  51. Xi DJ, Pei QB. In situ preparation of free-standing nanoporous alumina template for polybithiophene nanotube arrays with a concourse base. Nanotechnology, 2007, 18: 095602

    Article  Google Scholar 

  52. Berdichevsky Y, Lo YH. Polypyrrole nanowire actuators. Adv Mater, 2006, 18: 122–125

    Article  CAS  Google Scholar 

  53. Guo YB, Tang QX, Liu HB, Zhang YJ, Li YL, Hu WP, Wang S, Zhu DB. Light-controlled organic/inorganic P-N junction nanowires. J Am Chem Soc, 2008, 130: 9198–9199

    Article  CAS  Google Scholar 

  54. Zhang XT, Zhang J, Liu ZF, Robinson C. Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem Commun, 2004, 1852–1853

  55. Wu A M, Kolla H, Manohar S K. Chemical synthesis of highly conducting polypyrrole nanofiber film. Macromolecules, 2005, 38: 7873–7875

    Article  CAS  Google Scholar 

  56. Jang J, Yoon H. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem Commun, 2003, 720–721

  57. Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Adv Mater, 2005, 17: 1616–1620

    Article  CAS  Google Scholar 

  58. Huang JX, Virji S, Weiller BH, Kaner RB. Polyaniline nanofibers: Facile synthesis and chemical sensors. J Am Chem Soc, 2003, 125: 314–315

    Article  CAS  Google Scholar 

  59. Tran HD, Wang Y, D’Arcy JM, Kaner RB. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2008, 2: 1841–1848

    Article  CAS  Google Scholar 

  60. Huang JX, Kaner RB. A general chemical route to polyaniline nanofibers. J Am Chem Soc, 2004, 126: 851–855

    Article  CAS  Google Scholar 

  61. Nuraje N, Su K, Yang NL, Matsui H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano, 2008, 2: 502–506

    Article  CAS  Google Scholar 

  62. Su K, Nuraje N, Zhang LZ, Chu IW, Peetz RM, Matsui H, Yang NL. Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Adv Mater, 2007, 19: 669–672

    Article  CAS  Google Scholar 

  63. Tran HD, Kaner RB. A general synthetic route to nanofibers of polyaniline derivatives. Chem Commun, 2006, 3915–3917

  64. Ihn KJ, Moulton J, Smith P. Whiskers of poly(3-alkylthiophene)s. J Polym Sci Part B-Polym Phys, 1993, 31: 735–742

    Article  CAS  Google Scholar 

  65. Kim DH, Han JT, Park YD, Jang Y, Cho JH, Hwang M, Cho K. Single-crystal polythiophene microwires grown by self-assembly. Adv Mater, 2006, 18: 719–723

    Article  CAS  Google Scholar 

  66. Briseno AL, Mannsfeld SCB, Shamberger PJ, Ohuchi FS, Bao ZN, Jenekhe SA, Xia YN. Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts. Chem Mater, 2008, 20: 4712–4719

    Article  CAS  Google Scholar 

  67. Dong HL, Jiang SD, Jiang L, Liu YL, Li H, Hu WP, Wang EJ, Yan SK, Wei ZM, Xu W, Gong X. Nanowire Crystals of a rigid rod conjugated polymer. J Am Chem Soc, 2009, 131: 17315–17320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HuanLi Dong or WenPing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Wang, C., Li, R. et al. Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications. Sci. China Chem. 53, 1225–1234 (2010). https://doi.org/10.1007/s11426-010-3195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3195-9

Keywords

Navigation