Skip to main content
Log in

An inkjet printing soft photomask and its application on organic polymer substrates

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This article presents a simple, fast and low-cost method to fabricate a flexible UV light photomask. The designed micropatterns were directly printed onto transparent hybrid composite film of biaxially oriented polypropylene coated with silica oxide (BOPP-SiO x ) by an inkjet printer. Compared to the conventional chrome-mask, it is of advantages such as suitable for non-planar substrates, scalable for large area production, and extreme low cost. Combined with the confined photo-catalytic oxidation (CPO) reaction, the printed flexible BOPP-SiO x photomask was successfully used to pattern the shape of wettability of organic polymer surfaces, and then polyaniline patterns were deposited on the modified substrates with strong adhesion. With the above photomasks, the polyacrylic acid graft chains were duplicated on the poly (ethylene terephthalate) (PET) and BOPP substrates by photografting polymerization. We grafted polyacrylic acid (PAA) on a non-planar plastic substrate with this soft and thin plastic photomask. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the surface morphology and thickness of ink layers of the printed photomask. Optical microscopy was used to characterize the deposition polyaniline micropatterns. It was found that the desired patterns were precisely printed on the modified polymer films and were applied in modifying organic polymer substrates. The printed photomask could be exploited in the fields such as prototype microfluidics, micro-sensors, optical structures and any other kind of microstructures which does not require high durability and dimensional stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreau WM. Semiconductor Lithography: Principles and Materials. New York: Plenum, 1988. 1–30

    Google Scholar 

  2. Liu GY, Xu S, QY. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc Chem Res, 2000, 33(7): 457–466

    Article  CAS  Google Scholar 

  3. Petersen KE. Silicon as a mechanical material. Proc IEEE, 1982, 70(5): 420–457

    Article  CAS  Google Scholar 

  4. Pang YF, Liu JJ, Li HF, Lin JM. A microchip to analyze single crystal growth and size-controllability. Sci China Ser B Chem, 2009, 52(7): 1014–1020

    Article  CAS  Google Scholar 

  5. Briceno G, Chang HY, Sun XD, Schultz PG, Xiang X-D. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science, 1995, 270(5234): 273–275

    Article  CAS  Google Scholar 

  6. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE. Engineering cell shape and function. Science, 1994, 264(5159): 696–698

    Article  CAS  Google Scholar 

  7. Lee SS, Lin LY, Wu MC. Surface-micromachined free-space micro-optical systems containing three-dimensional microgratings. Appl Phys Lett, 1995, 67(15): 2135–2137

    Article  CAS  Google Scholar 

  8. Davidson MR, Berry GJ, Fan Y, Cairns JA, Thomson J. Analytical electron microscopy of laser-deposited metal patterns. Electron Micr Anal, 2001, 168: 215–218

    CAS  Google Scholar 

  9. Hsieh M-D, Zellers ET. In situ UV-photopolymerization of gas-phase monomers for microanalytical system applications. Sens Actu B, 2002, 82(2–3): 287–296

    Article  Google Scholar 

  10. Huang HY, Li NP. Technological Fundamental of Semiconductor Device. Shanghai: Shanghai Science and Technology Press, 1985. 156–170

    Google Scholar 

  11. Xia YN, Kim E, Zhao X-M, Rogers JA, Prentiss M, Whitesides GM. Complex optical surfaces formed by replica molding against elastomeric masters. Science, 1996, 273(5273): 347–349

    Article  CAS  Google Scholar 

  12. Lehn JM. Perspectives in supramolecular chemistry — From molecular recognition to molecular information processing and self organization. Angew Chem Int Ed, 1990, 102(11): 1347–1362

    CAS  Google Scholar 

  13. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW. Microarrays: Biotechnology’s discovery platform for functional genomics. Trends biotechnol, 1998, 16(7): 301–306

    Article  CAS  Google Scholar 

  14. Zubritsky E. Spotting a microarray system. Anal Chem, 2000, 72(23): 761A–767A

    Article  CAS  Google Scholar 

  15. Xia YN, Whitesides GM. Soft lithography. Angew Chem Int Ed, 1998, 37(5): 550–575

    Article  CAS  Google Scholar 

  16. Reichmanis E, Thompson LF. Polymer materials for microlithography. Chem Rev, 1989, 89(6): 1273–1289

    Article  CAS  Google Scholar 

  17. Hayes DJ, Grove ME, Cox WR. Development and application by ink-jet printing of advanced packaging materials. Proceedings — International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. Braselton, Ga, 1999. 88–93

  18. Meyer EM, Arp A, Calderone F, Kolbe J Meyer W, Schaefer H, Stuve M. Adhesive and conductive-inkjettable nano-filled inks for use in microelectronics and microsystems technology. NSTI Nanotechnology Conference and Trade Show. Anaheim, United States, 2005. 441-444

  19. Kolbe J. A novel electrically conductive adhesive for use in microelectronics and microsystems by ink jet technology. J Adhes, 2009, 85(7): 381–394

    Article  CAS  Google Scholar 

  20. Dupuis O, Delvaux MH, Dufour P, Sendrowicz H, Soumillion JP. Selective metalization of non-conductor substrates by ink-jet printing. IS&T’s International Congress on Advances in Non-Impact Printing Technologies. New Orleans, 1994. 461–463

  21. Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed, 1996, 8(1): 63–75

    Article  CAS  Google Scholar 

  22. Uhland SA, Holman RK, Cima MJ, Sachs E, Enokido Y. New process and materials developments in 3-dimensional printing. Mater Res Soc Symp Proc, 1999, 542: 153–158

    CAS  Google Scholar 

  23. Han SH, Kim YH, Choi MH, Lee SH, Jang J, Park YB, Irvin G, Drzaic P. Inkjet printed organic thin-film transistors with CNT S/D electrodes for flexible displays. SID Symp Digest Tech Papers, 2009, 40(3): 1536–1539

    Article  CAS  Google Scholar 

  24. O’Toole M, Shepherd R, Wallace GG, Diamond D. Inkjet printed LED based pH chemical sensor for gas sensing. Anal Chim Acta, 2009, 652(1–2): 308–314

    Article  CAS  Google Scholar 

  25. Lewis JA, Smay JE, Stuecker J, Cesarano J. III. Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc, 2006, 89(12): 3599–3609

    Article  CAS  Google Scholar 

  26. Peck BJ, Leproust EM. Modular printing of biopolymer arrays and dispensing apparatus for forming polymeric arrays. US Patent, 2008085511, 2008-04-10

  27. Fan HY, Lu YF, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ. Rapid prototyping of patterned functional nanostructures. Nature, 2000, 405(6782): 56–60

    Article  CAS  Google Scholar 

  28. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. Flash: A rapid method for prototyping paper-based microfluidic devices. Lab Chip, 2008, 8(12): 2146–2150

    Article  CAS  Google Scholar 

  29. Lu Y, Shi WW, Jiang L, Qin JH, Lin BC. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 2009, 30(9): 1497–1500

    Article  CAS  Google Scholar 

  30. Qin D, Xia YN, Whitesides GM. Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv Mater, 1996, 8(11): 917–919

    Article  CAS  Google Scholar 

  31. Tao D, Wu HK, Brittain ST, Whitesides GM. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction. Anal Chem, 2000, 72(14): 3176–3180

    Article  CAS  Google Scholar 

  32. Linder V, Wu HK, Jiang XY, Whitesides GM. Rapid prototyping of 2D structures with feature sizes larger than 8 μm. Anal Chem, 2003, 75(10): 2522–2527

    Article  CAS  Google Scholar 

  33. Lin C-H, Yang H, Chang F-Y, Chang S-H, Yen M-T. Fast patterning microstructures using inkjet printing conformal masks. Microsyst Technol, 2008, 14(9–11): 1263–1267

    Article  CAS  Google Scholar 

  34. Gan SH, Yang P, Yang WT. Interface-directed sol-gel: direct fabrication of covalently attached ultraflat inorganic oxide pattern on functionalized plastic. Sci China Chem, 2010, 53(1): 173–182

    Article  CAS  Google Scholar 

  35. Xu F, Datta P, Wang H, Gurung S, Hashimoto M, Wei SY, Goettert J, McCarley RL, Soper SA. Polymer microfluidic chips with integrated waveguides for reading microarrays. Anal Chem, 2007, 79(23): 9007–9013

    Article  CAS  Google Scholar 

  36. Lee C-Y, Wu G-W, Hsieh W-J. Fabrication of micro sensors on a flexible substrate. Sens Actuators A, 2008, A147(1): 173–176

    CAS  Google Scholar 

  37. Yang P, Deng JY, Yang WT. Confined photo-catalytic oxidation: A fast surface hydrophilic modification method for polymeric materials. Polymer, 2003, 44(23): 7157–7164

    Article  CAS  Google Scholar 

  38. Yang P, Xie JY, Yang WT. A simple method to fabricate conductive polymer micropattern on organic polymer substrate. Macromol Rapid Commun, 2006, 27(6): 418–423

    Article  CAS  Google Scholar 

  39. Yang WT, Rånby B. Radical living graft polymerization on the surface of polymeric materials. Macromolecules, 1996, 29(9): 3308–3310

    Article  CAS  Google Scholar 

  40. Huang ZY, Wang P-C, MacDiarmid AG, Xia YN, Whitesides GM. Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates. Langmuir, 1997, 13(24): 6480–6484

    Article  CAS  Google Scholar 

  41. Yang WT, Rånby B. Bulk surface photografting process and its applications. I. Reactions and kinetics. J Appl Polym Sci, 1996, 62(3): 533–543

    Article  CAS  Google Scholar 

  42. Yang WT, Rånby B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J Appl Polym Sci, 1996, 62(3): 545–555

    Article  CAS  Google Scholar 

  43. Xu S-G, Sun YF, Du JM, Yang WT. Surface modification of LDPE by photografting acrylic acid. J Beijing Univ Chem Tech, 2000, 27(4): 29–31

    CAS  Google Scholar 

  44. Deng JP, Yang WT, Rånby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. I. VAc (1). J Appl Polym Sci, 2000, 77(7): 1513–1521

    Article  CAS  Google Scholar 

  45. Deng JP, Yang WT, Rånby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. II. VAc (2). J Appl Polym Sci, 2000, 77(7): 1522–1531

    Article  CAS  Google Scholar 

  46. Deng JP, Yang WT, Rånby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride (MAH), and their charge transfer complex (CTC). III. VAc (3). J Appl Polym Sci, 2001, 80(9): 1426–1432

    Article  CAS  Google Scholar 

  47. Yang P, Meng XF, Zhang ZY, Jing BX, Yuan J, Yang WT. Thickness measurement of nanoscale polymer layer on polymer substrates by attenuated total reflection infrared spectroscopy. Anal Chem, 2005, 77(4): 1068–1074

    Article  CAS  Google Scholar 

  48. Larrubia V, Maria A, Busca G, Montanari T, Herrera DMC, Alemany LJ. Preparation and characterization of silicon hydride oxide: A fully hydrophobic solid. J Mater Chem, 2005, 15(8): 910–915

    Article  CAS  Google Scholar 

  49. Zhong WB, Wang YX, Yan Y, Sun YF, Deng JP, Yang WT. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons. J Phys Chem B, 2007, 111(15): 3918–3926

    Article  CAS  Google Scholar 

  50. Good RJ, Gupta RK. Rheological, interfacial and thermal control of polymer adhesion. I. Isothermal theory. J Adhes, 1988, 26(1), 13-16

    Google Scholar 

  51. Rozsnyai LF, Wrighton MS. Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers. Chem Mater, 1996, 8(2): 309–311

    Article  CAS  Google Scholar 

  52. Rogers JA, Jackman RJ, Whitesides GM. Microcontact printing and electroplating on curved substrates: Production of free-standing three-dimensional metallic microstructures. Adv Mater, 1997, 9(6): 475–477

    Article  CAS  Google Scholar 

  53. Smythe EJ, Dickey MD, Whitesides GM, Capasso F. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano, 2009, 3(1): 59–65

    Article  CAS  Google Scholar 

  54. Rogers JA, Jackman RJ, Whitesides GM. Constructing single- and multiple-helical microcoils and characterizing their performance as components of microinductors and microelectromagnets. IEEE JMEMS, 1997, 6: 184–192

    Google Scholar 

  55. Rogers JA, Jackman RJ, Whitesides GM, Wagener JL, Vengsarkar AM. Using microcontact printing to generate amplitude photomasks on the surfaces of optical fibers: A method for producing in-fiber grafings. Appl Phys Lett, 1997, 70(1): 7–9

    Article  CAS  Google Scholar 

  56. Jackman RJ, Wilbur JL, Whitesides GM. Fabrication of submicrometer features on curved substrates by microcontact printing. Science, 1995, 269(5224): 664–666

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanTai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Ma, Y., Chen, M. et al. An inkjet printing soft photomask and its application on organic polymer substrates. Sci. China Chem. 53, 1695–1704 (2010). https://doi.org/10.1007/s11426-010-3193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3193-y

Keywords

Navigation