Skip to main content
Log in

Interface-directed sol-gel: direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

For plastic electronics and optics, the fabrication of smooth, transparent and stable crack-free inorganic oxide films (and patterning) on flexible polymeric substrates with strong bonding strength and controllable thickness from nanometers to micrometers is a key but still remains a challenge. Among versatile inorganic oxides, silica oxide film as SiO x is especially important because this semiconductor material could provide crucial properties in devices or serve as a base layer for further multilayer construction. In this paper, we describe a new interface-directed sol-gel method to fabricate flexible high quality silicon oxide film onto commodity plastics. The resulting crack-free silica film has strong covalent bonding with polymer substrates, homogeneous morphology with ultralow roughness, highly optical transparency, tunable thickness from nm to μm, and easy patterning ability. Such fabrication strategy relies on a novel photocatalytic oxidation reaction by photosensitive ammonium persulfate (APS), which is able to fabricate highly reactive hydroxyl monolayer surface on inert polymeric substrates. This kind of hydroxylated surface could serve as nucleation and growth sites to initiate surface sol-gel process. As a result, well-defined SiO x film deposition (gelation) occurs, and patterned hydroxylation regions could be easily utilized to induce the formation of patterned oxide film arrays. Our strategy also excludes the requirements of clean room and vacuum devices so as to fulfill low-cost and fast fabrication demands. Two application examples from such high quality SiO x layer onto plastics are given but should not be limited within these. One is that oxygen permeation rate of SiO x deposited polymer film decreases 25 times than pristine polymer substrate, which is good for the potential packaging materials. The other one is that silanization monolayer, for example, 3-aminopropyltriethoxysilane (APTES), could be successfully constructed onto silica layer through classical silanization reaction, which is applicable for many potential purposes, for instance, proteins could be accordingly immobilized onto plastic support with effective signal-to-background ratio. Moreover, we further demonstrate that this interface-directed sol-gel strategy is a general method which could be successfully extended to other high quality oxide film fabrication, e.g., TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunker BC, Rieke PC, Tarasevich BJ, Campbell AA, Fryxell GE, Graff GL, Song L, Liu J, Virden JW, McVay GL. Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science, 1994, 264: 48–55

    Article  CAS  Google Scholar 

  2. Morin SA, Amos FF, Jin S. Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J Am Chem Soc, 2007, 129: 13776–13777

    Article  CAS  Google Scholar 

  3. Li S, Toprak MS, Jo YS, Dobson J, Kim DK, Muhammed M. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv Mater, 2007, 19: 4347–4352

    Article  CAS  Google Scholar 

  4. Jung JH, Jin JY, Lee I, Kim TW, Roh HG, Kim YH. Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer. Appl Phys Lett, 2006, 88(112107): 1–3

    Google Scholar 

  5. Jonas U, del Campo A, Krüger C, Glasser G, Boos D. Colloidal assemblies on patterned silane layers. Proc Nat Acd Sci, 2002, 99: 5034–5039

    Article  CAS  Google Scholar 

  6. Chatham H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Tech, 1996, 78(1–3): 1–9

    Article  CAS  Google Scholar 

  7. Tropsha YG, Harvey NG. Activated rate theory treatment of oxygen and water transport through silicon oxide/poly(ethylene terephthalate) composite barrier structures. J Phys Chem B, 1997, 101(13): 2259–2266

    Article  CAS  Google Scholar 

  8. Merceaa PV, Bârtan M. The permeation of gases through a poly (ethylene terephthalate) membrane deposited with SiO2. J Membr Sci, 1991, 59(3): 353–358

    Article  Google Scholar 

  9. Leterrier Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog Mater Sci, 2003, 48(1): 1–55

    Article  CAS  Google Scholar 

  10. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT. Conversion of some siloxane polymers to silicon oxide by UV/Ozone photochemical processes. Chem Mater, 2000, 12: 1591–1596

    Article  CAS  Google Scholar 

  11. Mohammed JS, DeCoster MA, McShane MJ. Fabrication of interdigitated micropatterns of self-assembled polymer nanofilms containing cell-adhesive materials. Langmuir, 2006, 22: 2738–2746

    Article  CAS  Google Scholar 

  12. Daniel C, Sohn KE, Mates TE, Kramer EJ, Rädler JO, Sackmann E, Nickel B, Andruzzi L. Structural characterization of an elevated lipid Bi-layer obtained by stepwise functionalization of a self-assembled alkenyl silane film. Biointerphases, 2007, 2: 109–118

    Article  CAS  Google Scholar 

  13. Yoon KR, Chi YS, Lee KB, Lee JK, Kim DJ, Koh YJ, Joo SW, Yun WS, Choi IS. Surface-initiated, ring-opening polymerization of p-dioxanone from gold and silicon oxide surfaces. J Mater Chem, 2003, 13(12): 2910–2914

    Article  CAS  Google Scholar 

  14. Sirkar K, Revzin A, Pishko MV. Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films. Anal Chem, 2000, 72(13): 2930–2936

    Article  CAS  Google Scholar 

  15. Ziemelis K. Putting it on plastic. Nature, 1998, 394: 619–620

    Article  CAS  Google Scholar 

  16. Brown AR, Pomp A, Hart CM, Leeuw DMDer. Logic gates made from polymer transistors and their use in ring oscillators. Science, 1995, 270: 972–974

    Article  CAS  Google Scholar 

  17. Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science, 1998, 280: 1741–1744

    Article  CAS  Google Scholar 

  18. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911–918

    Article  CAS  Google Scholar 

  19. Kim C, Burrows PE, Forrest SR, Micropatterning of organic electronic devices by cold-welding. Science, 2000, 288: 831–833

    Article  CAS  Google Scholar 

  20. Park SK, Kim YH, Han JI, Moon DG, Kim WK. Electrical and mechanical properties of low temperature evaporated silicon dioxide/polyimide dual-layer insulator for plastic-based polymer transistor. Thin Solid Films, 2003, 429(1–2): 231–237

    Article  CAS  Google Scholar 

  21. Saunders BR, Turner ML. Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci, 2008, 138(1): 1–23

    Article  CAS  Google Scholar 

  22. Fortunato E, Godinho MH, Santos H, Marques A, Assuncão V, Pereira L, Águas H, Ferreira I, Martins R. Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications. Thin Solid Films, 2003, 442(1–2): 127–131

    Article  CAS  Google Scholar 

  23. Qin Y, Wang XD, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809–814

    Article  CAS  Google Scholar 

  24. Zhou J, Gu YD, Fei P, Mai WJ, Gao YF, Yang RS, Bao G, Wang ZL. Flexible piezotronic strain sensor. Nano Lett, 2008, 8(9): 3035–3040

    Article  CAS  Google Scholar 

  25. Hendricks R, Lu J, Drzal LT, Lee I. Intact pattern transfer of conductive exfoliated graphite nanoplatelet composite films to polyelectrolyte multilayer platforms. Adv Mater, 2008, 20(10): 2008–2012

    Article  CAS  Google Scholar 

  26. Abdolvand A, Podlipensky A, Matthias S, Syrowatka F, Gösele U, Seifert G., Graener H. Metallodielectric two-dimensional photonic structures made by electric-field microstructuring of nanocomposite glasses. Adv Mater, 2005, 17(24): 2983–2987

    Article  CAS  Google Scholar 

  27. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706–710

    Article  CAS  Google Scholar 

  28. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321: 1468–1472

    Article  CAS  Google Scholar 

  29. Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA. Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507–511

    Article  CAS  Google Scholar 

  30. Hoffmann H. Room-temperature growth of silicon oxide nanofilms: new opportunities for plastic electronics. Angew Chem Int Ed, 2009, 48(14): 2457–2459

    Article  CAS  Google Scholar 

  31. Fu Q, Wagner T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf Sci Rep, 2007, 62(11); 431–498

    Article  CAS  Google Scholar 

  32. Vicente GS, Morales A, Gutiérrez MT. Sol-gel TiO2 antireflective films for textured monocrystalline silicon solar cells. Thin Solid Films, 2002, 403: 335–338

    Article  Google Scholar 

  33. Zhang YS, Yu K, Li GD, Peng DY, Zhang QX, Hu HM, Xu F, Bai W, Ouyang SX, Zhu ZQ. Field emission from patterned SnO2 nanostructures. Appl Surf Sci, 2006, 253(2): 792–796

    Article  CAS  Google Scholar 

  34. Schulz U, Kaiser N. Vacuum coating of plastic optics. Prog Surf Sci, 2006, 81: 387–401

    Article  CAS  Google Scholar 

  35. Vallon S, Drévillon B, Sénémaud C, Gheorghiu A, Yakovlev V. Adhesion of a thin silicon oxide film on a polycarbonate substrate. J Electron Spectrosc Relat Phenom, 1993, 64/65: 849–856

    Article  Google Scholar 

  36. Darque-Ceretti E, Aucouturier M. Adhesion and materials interconnection: physicochemical and mechanical behaviour of rubber-like adhesive interfaces. Interf Sci, 1997, 4(3–4): 243–261

    Google Scholar 

  37. Blees MH, Winkelman GB, Balkenende AR, Toonder JM, J den. The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films, 2000, 359: 1–13

    Article  CAS  Google Scholar 

  38. Henzie J, Barton JE, Stender CL, Odom TW. Large-area nanoscale patterning: chemistry meets fabrication. Acc Chem Res, 2006, 39: 249–257

    Article  CAS  Google Scholar 

  39. Reuss RH, Hopper DG, Park JG. Macroelectronics. MRS Bull, 2006, 31: 447–450

    CAS  Google Scholar 

  40. Gogolides E, Constantoudis V, Patsis GP, Tserepi A. A review of line edge roughness and surface nanotexture resulting from patterning processes. Microelectron Eng, 2006, 83(4–9): 1067–1072

    Article  CAS  Google Scholar 

  41. Noda K, Kadokura S, Naoe M. Microstructure and noise characteristics of Co-Cr-Ta films on ultraflat glass substrates for longitudinal recording disks. J Appl Phys, 2000, 87(9): 6343–6345

    Article  CAS  Google Scholar 

  42. Fadeev AY, McCarthy TJ. Surface modification of poly(ethylene terephthalate) to prepare surfaces with silica-like reactivity. Langmuir, 1998, 14(19): 5586–5593

    Article  CAS  Google Scholar 

  43. Xiang JH, Masuda Y, Koumoto K. Fabrication of super-site-selective TiO2 micropattern on a flexible polymer substrate using a barrier-effect self-assembly process. Adv Mater, 2004, 16(16): 1461–1464

    Article  CAS  Google Scholar 

  44. Xiang JH, Zhu PX, Masuda Y, Koumoto K. Fabrication of self-assembled monolayers (SAMs) and inorganic micropattern on flexible polymer substrate. Langmuir, 2004, 20(8): 3278–3283

    Article  CAS  Google Scholar 

  45. Cohn D, Stern T. Sequential surface derivatization of PET films. Macromolecules, 2000, 33(1): 137–142

    Article  CAS  Google Scholar 

  46. Shirahata N, Hozumi A. Etchingless microfabrication of a thick metal oxide film on a flexible polymer substrate. Chem Mater, 2005, 17(1): 20–27

    Article  CAS  Google Scholar 

  47. Hozumi A, Wu YY, Hayashi K, Sugimura H, Takai O, Yokogawa Y, Kameyama T. Micro-wear resistance of ultrathin silicon oxide film-covered polymer substrate. Surf Sci, 2003, 532–535: 1056–1060

    Article  CAS  Google Scholar 

  48. Hozumi A, Inagai H, Yokogawa Y, Kameyama T. Molecular-scale growth of silicon oxide on polymer substrate through vacuum ultraviolet light-assisted photooxidation of organosilane precursor. Thin Solid Films, 2003, 437(1–2): 89–94

    Article  CAS  Google Scholar 

  49. Hozumi A, Masuda T, Sugimura H, Kameyama T. Oxide Nanoskin Formed on Poly(methyl methacrylate). Langmuir, 2003, 19(18): 7573–7579

    Article  CAS  Google Scholar 

  50. Hozumi A, Kojima S, Nagano S, Seki T, Shirahata N, Kameyama T. Surface design for precise control of spatial growth of a mesostructured inorganic/organic film on a large-scale area. Langmuir, 2007, 23(6): 3265–3272

    Article  CAS  Google Scholar 

  51. Shirahata N, Shin W, Murayama N, Hozumi A, Yokogawa Y, Kameyama T, Masuda Y, Koumoto K. Reliable monolayer-template patterning of SnO2 thin films from aqueous solution and their hydrogen-sensing properties. Adv Funct Mater, 2004, 14(6): 580–588

    Article  CAS  Google Scholar 

  52. Awazu K, Onuki H. Photo-induced synthesis of amorphous SiO2 film from tetramethoxy-silane on polymethylmethacrylate at room temperature. J Non-Crystal Solids, 1997, 215(2–3): 176–181

    Article  CAS  Google Scholar 

  53. Kim Y, Zhao F, Mitsuishi M, Watanabe A, Miyashita T. Photoinduced high-quality ultrathin SiO2 film from hybrid nanosheet at room temperature. J Am Chem Soc, 2008, 130(36): 11848–11849

    Article  CAS  Google Scholar 

  54. Vallant T, Brunner H, Kattner J, Mayer U, Hoffmann H, Leitner T, Friedbacher G, Schgerl G, Svagera R, Ebel M. Monolayer-controlled deposition of silicon oxide films on gold, silicon, and mica substrates by room-temperature adsorption and oxidation of alkylsiloxane monolayers. J Phys Chem B, 2000, 104(22): 5309–5317

    Article  CAS  Google Scholar 

  55. Ferguson GS, Chaudhury MK, Biebuyck HA, Whitesides GM. Monolayers on disordered substrates: self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly(dimethylsiloxane). Macromolecules, 1993, 26: 5870–5875

    Article  CAS  Google Scholar 

  56. Dennler G, Houdayer A, Raynaud P, Ségui Y, Wertheimer MR. Characterization by RBS of hyper-thin SiO2 layers on various polymers. Nucl Instrum Methods Phys Res Sect B, 2002, 192(4): 420–428

    Article  CAS  Google Scholar 

  57. Erlat AG, Spontak RJ, Clarke RP, Robinson TC, Haaland PD, Tropsha Y, Harvey NG, Vogler EA. SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations. J Phys Chem B, 1999, 103(29): 6047–6055

    Article  CAS  Google Scholar 

  58. Singh B, Bouchet J, Rochat G, Leterrier Y, Månson JAE, Fayet P. Ultra-thin hybrid organic/inorganic gas barrier coatings on polymers. Surf Coat Technol, 2007, 201(16–17): 7107–7114

    Article  CAS  Google Scholar 

  59. Singh B, Bouchet J, Rochat G, Leterrier Y, Månson JAE, Fayet P. Durability of aminosilane-silica hybrid gas-barrier coatings on polymers. Surf Coat Technol, 2007, 201: 7107–7114

    Article  CAS  Google Scholar 

  60. Tokuhisa H, Hammond PT. Nonlithographic micro- and nanopat-terning of TiO2 using polymer stamped molecular templates. Langmuir, 2004, 20: 1436–1441

    Article  CAS  Google Scholar 

  61. Dunn B, Zink JI. Sol-gel chemistry and materials. Acc Chem Res, 2007, 40: 729–729

    Article  CAS  Google Scholar 

  62. Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev, 2002, 102: 4243–4266

    Article  CAS  Google Scholar 

  63. Backov R. Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. Soft Matter, 2006, 2: 452–464

    Article  CAS  Google Scholar 

  64. Zong ZG, He JY, Soucek MD. UV-curable organic-inorganic hybrid films based on epoxynorbornene linseed oils. Prog Org Coat, 2005, 53(2): 83–90

    Article  CAS  Google Scholar 

  65. Zayat M, Garcia-Parejoab P, Levy D. Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem Soc Rev, 2007, 36: 1270–1281

    Article  CAS  Google Scholar 

  66. Kang DJ, Bae BS. Photo-imageable sol-gel hybrid materials for simple fabrication of micro-optical elements. Acc Chem Res, 2007, 40(9): 903–912

    Article  CAS  Google Scholar 

  67. Hampton MJ, Williams SS, Zhou ZL, Nunes J, Ko DH, Templeton JL, Samulski ET, DeSimone JM. The Patterning of sub-500 nm inorganic oxide structures. Adv Mater, 2008, 20: 2667–2673

    Article  CAS  Google Scholar 

  68. Gratton EA, Williams SS, Napier M, Pohlhaus PD, Zhou ZL, Wiles KB, Maynor BW, Shen C, Olafsen T, Samulski ET, Desimone JM. The pursuit of a scalable nanofabrication platform for use in material and life science applications. Acc Chem Res, 2008, 41(12): 1685–1695

    Article  CAS  Google Scholar 

  69. Liu YX, Cui TH, Sunkam RK, Coane PJ, Vasile MJ, Geoettert J. Novel approach to form and pattern sol-gel polymethylsilsesquioxane-based spin-on glass thin and thick films. J Sens Actuator B-Chem, 2003, 88: 75–79

    Article  Google Scholar 

  70. Jeon NL, Clem PG, Nuzzo RG, Payne DA. Patterning of dielectric oxide thin layers by microcontact printing of self-assembled monolayers. J Mater Res, 1995, 12: 2996–2999

    Article  Google Scholar 

  71. Marzolin C, Terfort A, Tien J, Whitesides GM. Patterning of a polysiloxane precursor to silicate glasses by microcontact printing. Thin Solid Films, 1998, 315: 9–12

    Article  CAS  Google Scholar 

  72. Yang P, Zhang X, Yang B, Zhao HC, Chen JC, Yang WT. Facile preparation of a patterned, aminated polymer surface by UV-light-induced surface aminolysis. Adv Funct Mater, 2005, 15(9): 1415–1425

    Article  CAS  Google Scholar 

  73. Yang P, Zhang X, Xie JY, Chen JC, Yang WT. Micro/nanoscale well and channel fabrication on organic polymer substrates via a combination of photochemical and alkaline hydrolysis etchings. Biomacromolecules, 2006, 7(10): 2770–2775

    Article  CAS  Google Scholar 

  74. Love JC, Estroff LA, Kriebel J, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005, 105: 1103–1170

    Article  CAS  Google Scholar 

  75. Onclin S, Ravoo BJ, Reinhoudt DN. Engineering silicon oxide surfaces using Self-Assembled Monolayers. Angew Chem Int Ed, 2005, 44(39): 6282–6304

    Article  CAS  Google Scholar 

  76. Yang P, Deng JY, Yang WT. Confined photo-catalytic oxidation: a fast surface hydrophilic modification method for polymeric materials. Polymer, 2003, 44: 7157–7164

    Article  CAS  Google Scholar 

  77. Gan SH, Yang P, Yang WT. Photoactivation of alkyl C-H and silanization: a simple and general route to prepare high-density primary amines on inert polymer surfaces for protein immobilization. Biomacromolecules, 2009, 10(5): 1238–1243

    Article  CAS  Google Scholar 

  78. Yang P, Xie JY, Yang WT. A simple method to fabricate a conductive polymer micropattern on an organic polymer substrate. Macro Rapid Commun, 2006, 27(6): 418–423

    Article  CAS  Google Scholar 

  79. Yang P, Yang M, Zou SL, Xie JY, Yang WT. Positive and negative TiO2 micropatterns on organic polymer substrates. J Am Chem Soc, 2007, 129(6): 1541–1552

    Article  CAS  Google Scholar 

  80. Yang P, Zou SL, Yang WT. Positive and negative ZnO micropatterning on functionalized polymer surfaces. Small, 2008, 4: 1527–1536

    Article  CAS  Google Scholar 

  81. Zhao HC, Yang P, Deng JP, Liu LY, Zhu JW, Sui Y, Lu JM, Yang WT. Fabrication of a molecular-level multilayer film on organic polymer surface via chemical bonding assembly. Langmuir, 2007, 23: 1810–1814

    Article  CAS  Google Scholar 

  82. Sui Y, Zhao JC, Gan SH, Zhao HC, Yang WT. Surface-initiated ring-opening polymerization of ɛ-caprolactone from the surface of PP film. J Appl Polym Sci, 2007, 105: 877–884

    Article  CAS  Google Scholar 

  83. Vorotilov KA, Orlova EV, Petrovsky VI. Sol-gel silicon dioxide films. Thin Solid Films, 1992, 209(2): 188–194

    Article  CAS  Google Scholar 

  84. Vicente GS, Morales A, Gutierrez MT. Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon. Thin Solid Films, 2001, 391: 133–137

    Article  Google Scholar 

  85. Qian WP, Yao DF, Yu F, Xu B, Zhou R, Bao X, Lu ZH. Immobilization of antibodies on ultraflat polystyrene surfaces. Clin Chem, 2000, 46: 1456–1463

    CAS  Google Scholar 

  86. Yang P, Meng XF, Zhang ZY, Jing BX, Yuan J, Yang WT. Thickness measurement of nanoscale polymer layer on polymer substrates by attenuated total reflection infrared spectroscopy. Anal Chem, 2005, 77(14): 1068–1074

    Article  CAS  Google Scholar 

  87. Ángeles M, Vargas L, Busca G, Montanari T, Delgado MCH, Alemany LJ. Preparation and characterization of silicon hydride oxide: a fully hydrophobic solid. J Mater Chem, 2005, 15: 910–915

    Article  CAS  Google Scholar 

  88. Barnette AL, Asay DB, Kim SH. Average molecular orientations in the adsorbed water layers on silicon oxide in ambient conditions. Phys Chem Chem Phys, 2008, 10: 4981–4986

    Article  CAS  Google Scholar 

  89. Dufour P, Houtman C, Santini CC, Nedez C, Basset JM, Hsu LY, Shore SG. Surface organometallic chemistry: reaction of tris(allyl)rhodium with surfaces of silica, alumina, titania and magnesia. J Am Chem Soc, 1992, 114(11): 4248–4257

    Article  CAS  Google Scholar 

  90. Angst DL, Simmons GW. Moisture absorption characteristics of or ganosiloxane self-assembled monolayers. Langmuir, 1991, 7(10): 2236–2242

    Article  CAS  Google Scholar 

  91. Yadavalli VK, Forbes JG., Wang K. Functionalized self-assembled monolayers on ultraflat gold as platforms for single molecule force spectroscopy and imaging. Langmuir, 2006, 22(16): 6969–6976

    Article  CAS  Google Scholar 

  92. Tada H. Layer-by-layer construction of SiOx film on oxide semiconductors. Langmuir, 1995, 11(9): 3281–3284

    Article  CAS  Google Scholar 

  93. Evans S. Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis. Surf Interface Anal, 1997, 25(12): 924–930

    Article  CAS  Google Scholar 

  94. Chen W, Zhang JY, Fang Q, Li S, Wu JX, Li FQ, Jiang K. Sol-gel preparation of thick titania coatings aided by organic binder materials. Sens Actuator B-Chem, 2004, 100(1–2): 195–199

    Article  CAS  Google Scholar 

  95. Francioso L, Siciliano P. Top-down contact lithography fabrication of a TiO2 nanowire array over a SiO2 mesa. Nanotechnology, 2006, 17: 3761–3767

    Article  CAS  Google Scholar 

  96. Makgae ME, Klink MJ, Crouch AM. Performance of sol-gel titanium mixed metal oxide electrodes for electro-catalytic oxidation of phenol. Appl Catal B-Environ, 2008, 84(3–4): 659–666

    Article  CAS  Google Scholar 

  97. Padmanabhan SC, Pillai SC, Colreavy J, Balakrishnan S, McCormack DE, Perova TS, Hinder SJ, Kelly JM. A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania. Chem Mater, 2007, 19: 4474–4481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanTai Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, S., Yang, P. & Yang, W. Interface-directed sol-gel: direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics. Sci. China Chem. 53, 173–182 (2010). https://doi.org/10.1007/s11426-010-0022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0022-2

Keywords

Navigation