Skip to main content
Log in

Supercritical CO2-driven, periodic patterning on one-dimensionals carbon nanomaterials

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

One-dimensional carbon nano-materials, in particular carbon nanotubes (CNTs) and carbon nanofibers (CNFs), are of scientific and technological interest due to their satisfactory properties and ability to serve as templates for directed assembly. In this work, linear high density polyethylene (PE) was periodically decorated on CNTs and CNFs using a supercritical carbon dioxide (scCO2)antisolvent-induced polymer epitaxy (SAIPE) method, leading to nano-hybrid shish-kebab (NHSK) structures. The formation mechanism of different morphologies of PE lamellae on CNTs and CNFs has been discussed. Palladium nanoparticles were synthesized and immobilized on the PE/CNF NHSK structure with the assistance of scCO2. The obtained hierarchical nano-hybrid architecture may find applications in microfabrication and other related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujita M, Tsuji M, Kohjiya S. Perfectly alternating ethylene-carbon monoxide copolymer crystallized epitaxially on alkali halides. 3. Lamellar and crystalline core thicknesses. Macromolecules, 2001, 34: 7724–7729

    Article  CAS  Google Scholar 

  2. Costa VD, Moigne JL, Oswald L, Pham TA, Thierry A. Thin film orientation by epitaxy of carbazolyl polydiacetylenes: Guest-host interaction on a crystal surface. Macromolecules, 1998, 31: 1635–1643

    Article  Google Scholar 

  3. Wittmann JC, Lotz B. Eptaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci, 1990, 15: 909–948

    Article  CAS  Google Scholar 

  4. Balik C, Hopfinger A. Fold-plane epitaxial crystallization of poly(oxymethylene) on mica. Macromolecules, 1980, 13: 999–1001

    Article  CAS  Google Scholar 

  5. Greso AJ, Phillips PJ. Explanation of the epitaxial deposition of nylon 66 on carbon fibres and its extension to isotactic polypropylene. Polymer, 1996, 37: 3165–3170

    Article  CAS  Google Scholar 

  6. Takenaka Y, Miyaji H, Hoshino A, Tracz A, Jeszka JK, Kucinska I. Interface structure of epitaxial polyethylene crystal grown on HOPG and MoS2 substrates. Macromolecules, 2004, 37: 9667–9669

    Article  CAS  Google Scholar 

  7. Nakamura J, Kawaguchi A. In situ observations of annealing behavior of polyethylene single crystals on various substrates by AFM. Macromolecules, 2004, 37: 3725–3734

    Article  CAS  Google Scholar 

  8. Ning NY, Luo F, Pan BF, Zhang Q, Wang K, Fu Q. Observation of shear-induced hybrid shish kebab in the injection molded bars of linear polyethylene containing inorganic whiskers. Macromolecules, 2007, 40: 8533–8536

    Article  CAS  Google Scholar 

  9. Li CY, Li LY, Cai WW, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: Periodically functionalized carbon nanotubes. Adv Mater, 2005, 17: 1198–1202

    Article  CAS  Google Scholar 

  10. Uehara H, Kato K, Kakiage M, Yamanobe T, Komoto T. Single-walled carbon nanotube nucleated solution-crystallization of polyethylene. J Phys Chem C, 2007, 111: 18950–18957

    Article  CAS  Google Scholar 

  11. Zhang Q, Lippits DR, Rastogi S. Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules, 2006, 39: 658–666

    Article  CAS  Google Scholar 

  12. García-Gutiérrez MC, Nogales A, Rueda DR, Domingo C, García-Ramos JV, Broza G, Roslaniec Z, Schulte K, Ezquerra TA. X-ray microdiffraction and micro-Raman study on an injection moulding SWCNT-polymer nanocomposite. Compos Sci Technol, 2007, 67: 798–805

    Article  CAS  Google Scholar 

  13. Liang S, Wang K, Chen DQ, Zhang Q, Du RN, Fu Q. Shear enhanced interfacial interaction between carbon nanotubes and polyethylene and formation of nanohybrid shish-kebabs. Polymer, 2008, 49: 4925–4929

    Article  CAS  Google Scholar 

  14. Li LY, Li CY, Ni CY, Rong LX, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer, 2007, 48: 3452–3460

    Article  CAS  Google Scholar 

  15. Bessho T, Inoue K, Kotwa I, Homma H. Surface modification of insulation resin for build-up process using TiO2 as a photocatalyst and its application to the metallization. Electrochemistry, 2006, 74: 299–302

    CAS  Google Scholar 

  16. Li LY, Li CY, Ni CY. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc, 2006, 128: 1692–1699

    Article  CAS  Google Scholar 

  17. Tibbetts GG, Lake ML, Strong KL, Rice BP. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol, 2007, 67: 1709–1718

    Article  CAS  Google Scholar 

  18. Wang DH, Mirau P, Li B, Li CY, Baek JB, Tan LS. Solubilization of carbon nanofibers with a covalently attached hyperbranched poly(ether ketone). Chem Mater, 2008, 20: 1502–1515

    Article  CAS  Google Scholar 

  19. Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU. Nano-biotechnology: Carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology, 2004, 15: 48–54

    Article  CAS  Google Scholar 

  20. Lozano K, Barrera EV. Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Poly Sci, 2001, 79: 125–133

    Article  CAS  Google Scholar 

  21. Nanni F, Travaglia P, Valentini M. Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos Sci Technol, 2009, 69: 485–490

    Article  CAS  Google Scholar 

  22. Tel-Vered R, Walsh DA, Mehrgardi MA, Bard AJ. Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments. Anal Chem, 2006, 78: 6959–6966

    Article  CAS  Google Scholar 

  23. van der Lee MK, Jos van Dillen A, Bitter JH, de Jong KP. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts. J Am Chem Soc, 2005, 127: 13573–13582

    Article  CAS  Google Scholar 

  24. Yu Z, McKnight TE, Nance EM, Melechko AV, Simpson ML, Morrison B. Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices. Nano Lett, 2007, 7: 2188–2195

    Article  CAS  Google Scholar 

  25. Kubota S, Nishikiori H, Tanaka N, Endo M, Fujii T. Dispersion of acid-treated carbon nanofibers into gel matrices prepared by the sol-gel method. J Phys Chem B, 2005, 109: 23170–23174

    Article  CAS  Google Scholar 

  26. Yue J, Xu Q, Zhang ZW, Chen ZM. Periodic patterning on carbon nanotubes: supercritical CO2-induced polyethylene epitaxy. Macromolecules, 2007, 40: 8821–8826

    Article  CAS  Google Scholar 

  27. Zhang ZW, Xu Q, Chen ZM, Yue J. Nanohybrid shish-kebabs: Supercritical CO2-induced PE epitaxy on carbon nanotubes. Macromolecules, 2008, 41: 2868–2873

    Article  CAS  Google Scholar 

  28. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng J. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294: 1901–1903

    Article  CAS  Google Scholar 

  29. Horinouchi S, Yamanoi Y, Yonezawa T, Mouri T, Nishihara H. Hydrogen storage properties of isocyanide-stabilized palladium nanoparticles. Langmuir, 2006, 22: 1880–1884

    Article  CAS  Google Scholar 

  30. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J Am Chem Soc, 2008, 130: 1828–1829

    Article  CAS  Google Scholar 

  31. Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289: 1757–1760

    Article  CAS  Google Scholar 

  32. Yan C, Li HH, Zhang JM, Ozaki Y, Shen DY, Yan DD, Shi AC, Yan SK. Surface-induced anisotropic chain ordering of polycarprolactone on oriented polyethylene substrate: Epitaxy and soft epitaxy. Macromolecules, 2006, 39: 8041–8048

    Article  CAS  Google Scholar 

  33. Hobbs JK, Humohris ADL, Miles MJ. In-situ atomic force microscopy of polyethylene crystallization. 1. Crystallization from an oriented backbone. Macromolecules, 2001, 34: 5508–5519

    Article  CAS  Google Scholar 

  34. Somania RH, Yang L, Zhu L, Hsiao BS. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer, 2005, 46: 8587–8623

    Article  CAS  Google Scholar 

  35. Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M. Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer, 2007, 48: 401–408

    Article  CAS  Google Scholar 

  36. Ding SJ, Zhang CL, Yang M, Qu XZ, Lu YF, Yang ZZ. Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres. Polymer, 2006, 47: 8360–8366

    Article  CAS  Google Scholar 

  37. He LF, Durham E, Zhao DY, Roberts CB. Polysugar-stabilized Pd nanoparticles exhibiting high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene. Langmuir, 2008, 24: 328–336

    Article  CAS  Google Scholar 

  38. Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS. Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater, 2009, 171: 400–404

    Article  CAS  Google Scholar 

  39. Reetz T, De Vries JG. Ligand-free Heck reactions using low Pd-loading. Chem Commun, 2004, 1559-1563

  40. Yoon B, Wai CM. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J Am Chem Soc, 2005, 127: 17174–17175

    Article  CAS  Google Scholar 

  41. Ye XR, Lin YH, Wang CM, Engelhard MH, Wang Y, Wai CM. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J Mater Chem, 2004, 14: 908–913

    Article  CAS  Google Scholar 

  42. Wang BB, Li B, Xiong J, Li CY. Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules, 2008, 41: 9516–9521

    Article  CAS  Google Scholar 

  43. Chen P, Wu X, Lin J, Tan KL. Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template. J Phys Chem B, 1999, 103: 4559–4561

    Article  CAS  Google Scholar 

  44. Xue B, Chen P, Hong Q, Lin J, Tan KL. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem, 2001, 11: 2378–2381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Xu, Q. & Li, Z. Supercritical CO2-driven, periodic patterning on one-dimensionals carbon nanomaterials. Sci. China Chem. 53, 1525–1533 (2010). https://doi.org/10.1007/s11426-010-3106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3106-0

Keywords

Navigation