Skip to main content
Log in

Preparation of grain size controlled boron-doped diamond thin films and their applications in selective detection of glucose in basic solutions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Boron-doped diamond (BDD) thin films with different crystal grain sizes were prepared by controlling the reacting gas pressure using hot filament chemical vapor deposition (HFCVD). The morphologies and structures of the prepared diamond thin films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical responses of K4Fe(CN)6 on different BDD electrodes were investigated. The results suggested that electron transfer was faster at the boron-doped nanocrystalline diamond (BDND) thin film electrodes in comparison with that at other BDD thin film electrodes. The prepared BDD thin film electrodes without any modification were used to directly detect glucose in the basic solution. The results showed that the as-prepared BDD thin film electrodes exhibited good selectivity for detecting glucose in the presence of ascorbic acid (AA) and uric acid (UA). The higher sensitivity was observed on the BDND thin film grown on the boron-doped microcrystalline diamond (BDMD) thin film surface, and the linear response range, sensitivity and the low detection limit were 0.25–10 mM, 189.1 μA mmo−1 cm−2 and 25 μM (S/N=3) for glucose in the presence of AA and UA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang SM, Hu HC, You MS, Hong F, Lin CN. Growth of diamond films with high surface smoothness. Diam Relat Mater, 2006, 15: 22–28

    Article  CAS  Google Scholar 

  2. Zhao JW, Wu LZ, Zhi JF. Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on the nanocrystalline diamond film and their applications to DNA hybridization detection. J Mater Chem, 2008, 18: 2459–2465

    Article  CAS  Google Scholar 

  3. Fujishima A, Einaga Y, Rao TN, Tryk DA. Diamond Electrochemistry, Elsevier/BKC: Tokyo, 2005. 28–29

    Google Scholar 

  4. Zhou YL, Zhi JF, Zou YS, Zhang WJ, Lee ST. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Anal Chem, 2008, 80: 4141–4146

    Article  CAS  Google Scholar 

  5. Sun C, Zhang WJ, Wang N, Chan CY, Bello I, Lee CS, Lee ST. Crystal morphology and phase purity of diamond crystallites during bias enhanced nucleation and initial growth stages. J Appl Phys, 2000, 88: 3554–3360

    Google Scholar 

  6. Wang T, Xin HW, Zhang ZM, Dai YB, Shen HS. The fabrication of nanocrystalline diamond films using hot filament CVD. Diam Relat Mater, 2004, 13: 6–14

    Article  Google Scholar 

  7. Dieter MG. Nanocrystalline diamond films. Annu Rev Mater Sci, 1999, 29: 211–218

    Article  Google Scholar 

  8. Wilson R, Turner APF. Glucose oxidase: an ideal enzyme. Biosens Bioelectron, 1992, 7: 165–185

    Article  CAS  Google Scholar 

  9. Kang XH, Mai ZB, Zou XY, Mo JY. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem, 2007, 363: 143–150

    Article  CAS  Google Scholar 

  10. Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors. Anal Chim Acta, 2006, 556: 46–57

    Article  CAS  Google Scholar 

  11. Keith BM, Hrapovic S, Liu YL, Wang DS, Luong JHT. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta, 2004, 516: 35–41

    Article  Google Scholar 

  12. Watanabe T, Ivandini TA, Makide Y, Fujishima A, Einaga Y. Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Anal Chem, 2006, 78: 7857–7860

    Article  CAS  Google Scholar 

  13. Zhao W, Xu JJ, Shi CG, Chen HY. Fabrication, characterization and application of gold nano-structured film. Electrochem Commun, 2006, 8: 773–778

    Article  CAS  Google Scholar 

  14. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem Commun, 2005, 7: 189–193

    Article  CAS  Google Scholar 

  15. Park S, Chung TD, Kim HC. Nonenzymatic glucose detection using mesoporous platinum. Anal Chem, 2003, 75: 3046–3049

    Article  CAS  Google Scholar 

  16. Zhang X, Chan KY, You JK, Lin ZG, Tseung ACC. Partial oxidation of glucose by a Pt/WO3 electrode. J Electroanal Chem, 1997, 430: 147–153

    Article  CAS  Google Scholar 

  17. Zhang X, Chan KY, Tseung ACC. Electrochemical oxidation of glucose by Pt/WO3 electrode. J Electroanal Chem, 1995, 386: 241–243

    Article  Google Scholar 

  18. Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode. Electrochem Commun, 2005, 7: 879–887

    Article  CAS  Google Scholar 

  19. Ohnishi K, Einaga Y, Notsu H, Terashima C, Rao TN, Park SG, Fujishima A. Electrochemical glucose detection using nickel-implanted boron-doped diamond electrodes. Electrochem Solid-State lett, 2002, 5: D1–D3

    Article  CAS  Google Scholar 

  20. Cui HF, Ye JS, Zhang WD, Li CM, Luong JHT, Sheu FS. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta, 2007, 594: 175–183

    Article  CAS  Google Scholar 

  21. Yeo IH, Johnson DC. Anodic response of glucose at copper-based alloy electrodes. J Electroanal Chem, 2000, 484: 157–163

    Article  CAS  Google Scholar 

  22. Qiu R, Zhang XL, Qiao R, Li Y, Kim Y, Kang YS. CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater, 2007, 19: 4174–4180

    Article  CAS  Google Scholar 

  23. Zhao JW, Wu LZ, Zhi JF. Nonenzymatic glucose detection using as-prepared boron-doped diamond thin-film electrodes. Analyst, 2009, 134: 794–799

    Article  CAS  Google Scholar 

  24. Zhao JW, Wu DH, Zhi JF. A novel electrochemical method for diabetes diagnosis based on as-prepared boron-doped nanocrystalline diamond thin-film electrodes. J Electroanal Chem, 2009, 626: 98–102

    Article  CAS  Google Scholar 

  25. Siew PS, Loh KP, Poh WC, Zhang H. Biosensing properties of nanocrystalline diamond film grown on polycrystalline diamond electrodes. Diam Relat Mater, 2005, 14(3–7): 426–431

    Article  CAS  Google Scholar 

  26. Ushizawa K, Watanabe K, Ando T, Sakaguchi I, Gamo MN, Sato Y, Kanda H. Boron concentration dependence of Raman spectra on “100” and “111” facets of B-doped CVD diamond. Diam Relat Mater, 1998, 7(11–12): 1719–1722

    Article  CAS  Google Scholar 

  27. Bard A, Faulkner LR. Electrochemical Methods: Fundamentals and Application. 2nd ed. New York: John Wiley and Sons, 2000. 233–255

    Google Scholar 

  28. Wang K, Zhang D, Zhou T, Xia XH. A novel dual-electrode approach for highly selective detection of glucose based on diffusion layer theory: experiments and simulation. Chem Eur J, 2005, 11: 1341–1347

    Article  CAS  Google Scholar 

  29. Lee J, Park SM. Direct electrochemical assay of glucose using boron-doped diamond electrodes. Anal Chim Acta, 2005, 545: 27–32

    Article  CAS  Google Scholar 

  30. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y. Electroanalytical application of modified diamond electrodes. Diam Relat Mater, 2004, 13: 2003–2008

    Article  CAS  Google Scholar 

  31. Koppang MD, Witek M, Blau J, Swain GM. Electrochemical oxidation of polyamines at diamond thin-film electrodes. Anal Chem, 1999, 71: 1188–1195

    Article  CAS  Google Scholar 

  32. Fu YQ, Yan BB, Loh NL. Effects of pre-treatments and interlayers on the nucleation and growth of diamond coatings on titanium substrates. Surf Coat Tech, 2000, 130(2–3): 173–185

    Article  CAS  Google Scholar 

  33. Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater, 2008, 18: 591–599

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianWen Zhao or JinFang Zhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Wang, J., Zhi, J. et al. Preparation of grain size controlled boron-doped diamond thin films and their applications in selective detection of glucose in basic solutions. Sci. China Chem. 53, 1378–1384 (2010). https://doi.org/10.1007/s11426-010-3099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3099-8

Keywords

Navigation