Skip to main content
Log in

Carbon-free D3d [E3ME3]2− (E=P, As; M=Ni, Pd, Pt): The smallest inorganic sandwich complexes with aromatic η3-P 3 and η3-As 3 ligands

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A density functional theory and wave function theory investigation on the possibility of carbon-free phosphametallocenes [P3MP3]2− and arsenametallocenes [As3MAs3]2− (M=Ni, Pd, Pt) is presented in this work. Staggered singlet D3d [E3ME3]2− (E=P, As)-the smallest inorganic metallocenes possible to construct-proved to be the global minima of the heptaatomic systems and may be targeted in future experiments. Cyclo-P 3 and cyclo-As 3 turned out to possess similar aromaticity to cyclo-P 5 and cyclo-As 5 and may serve as effective ligands to sandwich a wide range of transition metals. The first vertical electron detachment energies of Cs [E3ME3]Li monoanions with a staggered [E3ME3]2− sandwich core were predicted to be between 2.7 and 2.9 eV; the extent of stabilization by Li+ suggests that such materials be viable targets for experimental characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peruzzini M, Gonsalvi L, Romerosa A. Coordination chemistry and functionalization of white phosphorus via transition metal complexes. Chem Soc Rev, 2005, 34: 1038–1047

    Article  CAS  Google Scholar 

  2. Johnson BP, Balazs G, Scherer M. Complexes with a metal-phosphorus triple bond. Top Curr Chem, 2004, 232: 29–41

    Google Scholar 

  3. Scherer OJ. Pn and Asn ligands: A novel chapter in the chemistry of phosphorus and arsenic. Acc Chem Res, 1999, 32:751–762

    Article  CAS  Google Scholar 

  4. Scherer OJ. Complexes with substituent-free acyclic and cyclic phosphorus, arsenic, antimony, and bismuth ligands. Angew Chem Int Ed Engl, 1990, 29: 1104–1122

    Article  Google Scholar 

  5. Tremel W, Hoffmann R, Kertesz M. Inorganic rings, intact and cleaved, between two metal fragments. J Am Chem Soc, 1989, 111: 2030–2039

    Article  CAS  Google Scholar 

  6. Reddy AC, Jemmis ED, Scherer OJ, Winter R, Heckmann G, Wolmershauser G. Electronic structure of triple-decker sandwich complexes with P6 middle rings. Synthesis and X-ray structure determination of bis (η5-1,3-di-tert-butylcyclopentadienyl)(μ-η6: η5-hexaphosphorin)diniobium. Organomet, 1992, 11: 3894–3900

    Article  CAS  Google Scholar 

  7. Scherer OJ. Small neutral Pn molecules. Angew Chem Int Ed, 2000, 39: 1029–1030

    Article  CAS  Google Scholar 

  8. Vaira MD, Sacconi L. Transition metal complexes with cyclotriphosphorus (η3P3) and tetrahedro-tetraphosphorus (η1P4) ligands. Angew Chem Int Ed Engl, 1982, 21: 330–342

    Article  Google Scholar 

  9. Hitchcock PB, Nixon JF, Natos RM. Tri-, penta-, and hexa-phospha ruthenocenes. J Organometal Chem, 1995, 490: 155–162

    Article  CAS  Google Scholar 

  10. Seidel WW, Summerscales OT, Patrick BO, Fryzuk MD. Activation of white phosphorus by reduction in the presence of a zirconium diamidodiphosphine macrocycle: formation of a bridging squareplanar cyclo-P4 unit. Angew Chem Int Ed, 2009, 48: 115–117

    Article  CAS  Google Scholar 

  11. Kraus F, Aschenbrenner JC, Korber N. P 2−4 : A 6π aromatic polyphosphide in dicesium cyclotetraphosphide-ammonia. Angew Chem Int Ed, 2003, 42: 4030–4033

    Article  CAS  Google Scholar 

  12. Lynam JM. New routes for the functionalization of P4. Angew Chem Int Ed, 2008, 47: 831–833

    Article  CAS  Google Scholar 

  13. Vaira MD, Midollini S, Sacconi L. Cyclo-triphosphorus and cyclo-triarsenic as ligands in “double sandwich” complexes of cobalt and nickel. J Am Chem Soc, 1979, 101: 1757–1763

    Article  Google Scholar 

  14. Urnezius E, Brennessel WW, Cramer CJ, Ellis JE, Schleyer PvR. A carbon-free sandwich complex [(P5)2Ti]2−. Science, 2002, 295: 832–834

    Article  CAS  Google Scholar 

  15. Li Z, Zhao C, Chen L. Sandwich complexes of the P 2−4 aromatic ring with the first row transition metal. J Mol Struct (THEOCHEM), 2007, 810: 1–6

    Article  CAS  Google Scholar 

  16. Burdett JK, Marsden CJ. New J Chem, 1988, 12: 797

    CAS  Google Scholar 

  17. Hamilton TP, Schaefer IIIHF. The triphosphorus anion (P 3 ): A near degeneracy between equilateral triplet and linear singlet electronic states. Chem Phys Lett, 1990, 166: 303–306

    Article  CAS  Google Scholar 

  18. Haser M. Structural rules of phosphorus. J Am Chem Soc, 1994, 116: 6925–6926

    Article  Google Scholar 

  19. Jones RO, Gantefor G, Hunsicker S, Pieperhoff P. Structure and spectroscopy of phosphorus cluster anions: theory (simulated annealing) and experiment (photoelectron detachment). J Chem Phys, 1995, 103: 9549–9562

    Article  CAS  Google Scholar 

  20. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  22. Burke K, Perdew JP, Wang Y. In: Dobson J F, Vignale G, Das M P, eds. Electronic Density Functional Theory: Recent Progress and New Directions. New York: Plenum, 1998

    Google Scholar 

  23. Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B, 1996, 54: 16533–16539

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Ko-maromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill P MW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision, A. 1. Pittsburgh: Gaussian, Inc., 2003

    Google Scholar 

  25. Scuseria GE, Schaefer HF. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J Chem Phys, 1989, 90: 3700–3703

    Article  CAS  Google Scholar 

  26. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJvE. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc, 1996, 118: 6317–6318

    Article  CAS  Google Scholar 

  27. Stuttgart RSC 1997 ECP basis sets used in this work and the related references therein can be obtained from https://bse.pnl.gov/bse/portal

  28. Martin JML, Sundermann A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. J Chem Phys, 2001, 114: 3408–3420

    Article  CAS  Google Scholar 

  29. Alexandrova AN, Boldyrev AI. Search for the Li 0/+1/−1n (n = 5–7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J Chem Theory Comput, 2005, 1: 566–580

    Article  CAS  Google Scholar 

  30. Scherer OJ, Braun J, Wolmershauser G. Nickelapnicogencubane. Chem Ber, 1990, 123: 471–475

    Article  CAS  Google Scholar 

  31. Scherer OJ, Dave T, Braun J, Wolmershauser G. Nickelkomplexe mit P x liganden. J Organomet Chem, 1988, 350: C20–C24

    Article  CAS  Google Scholar 

  32. Zhao S. Study of the chemical bond in crystals III NiAs type compounds. Acta Sci Nat Univ Pekin, 1992, 28: 394–398

    CAS  Google Scholar 

  33. Exner K, Schleyer PvR. Planar hexacoordinate carbon: A viable possibility. Science, 2000, 290: 1937–1940

    Article  CAS  Google Scholar 

  34. Li X, Kuznetsov AE, Zhang HF, Boldyrev AI, Wang LS. Observation of all-metal aromatic molecules. Science, 2001, 291: 859–861

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiDian Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 20873117).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, C., Chen, Q., Guo, J. et al. Carbon-free D3d [E3ME3]2− (E=P, As; M=Ni, Pd, Pt): The smallest inorganic sandwich complexes with aromatic η3-P 3 and η3-As 3 ligands. Sci. China Chem. 53, 940–944 (2010). https://doi.org/10.1007/s11426-010-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0116-x

Keywords

Navigation