Skip to main content
Log in

Surface bonding on silicon surfaces as probed by tip-enhanced Raman spectroscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tip-enhanced Raman spectroscopy (TERS) has been used to obtain the Raman signal of surface species on silicon single crystal surfaces without the necessity for surface enhancement by addition of Ag nanoparticles. By illuminating the hydrogenterminated silicon surface covered with a droplet of 4-vinylpyridine with UV light, a 4-ethylpyridine modified silicon surface can be easily obtained. By bringing a scanning tunneling microscope (STM) Au tip with a nanoscale tip apex to a distance of ca. 1 nm from the modified silicon surface, enhanced Raman signals of the silicon phonon vibrations and the surface-bonded 4-ethylpyridine were obtained. The Raman enhancement factor was estimated to be close to 107. By comparing the surface-enhanced Raman scattering (SERS) signal obtained after surface enhancement with Ag nanoparticles and the TERS signal of the surface, the advantage of TERS over SERS for characterizing the surface species on substrates becomes apparent: TERS readily affords vibrational information about the system without disturbing it by surface enhancement. In this sense, TERS can be considered a truly non-invasive tool which is ideal for characterizing the actual surface species on substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waltenburg HN, Yates JT. Surface chemistry of silicon. Chem Rev, 1995, 95: 1589–1573

    Article  CAS  Google Scholar 

  2. Hamers RJ, Wang Y. Atomically-resolved studies of the chemistry and bonding at silicon surfaces. Chem Rev, 1996, 96: 1261–1290

    Article  CAS  Google Scholar 

  3. Buriak JM. Organometallic chemistry on silicon and germanium surfaces. Chem Rev, 2002, 102: 1271–1303

    Article  CAS  Google Scholar 

  4. Sieval AB, Linke R, Zuilhof H, Sudhölter EJR. High-quality alkyl monolayers on silicon surfaces. Adv Mater, 2000, 12: 1457–1460

    Article  CAS  Google Scholar 

  5. Wayner DDM, Wolkow RA. Organic modification of hydrogen terminated silicon surfaces. J Chem Soc, Perkin Trans, 2002, 1: 23–34

    Google Scholar 

  6. Schöning MJ, Luth H. Novel concepts for silicon-based biosensors. Phys Status Solidi A, 2001, 185: 65–77

    Article  Google Scholar 

  7. de Villeneuve CH, Pinson J, Bernard MC. P. Allongue. Electrochemical formation of close-packed phenyl layers on Si(111). J Phys Chem B, 1997, 101: 2415–2420

    Article  Google Scholar 

  8. Fabre B, Lopinski GP, Wayner DDM. Photoelectrochemical generation of electronically conducting polymer-based hybrid junctions on modified Si(111) surfaces. J Phys Chem B, 2003, 107: 14326–14335

    Article  CAS  Google Scholar 

  9. Bansal A, Li X, Lauermann I, Lewis NS, Yi SI, Weinberg WH. Alkylation of Si surfaces using a two-step halogenation/Grignard route. J Am Chem Soc, 1996, 118: 7225–7226

    Article  CAS  Google Scholar 

  10. Pignataro B, Licciardello A, Cataldo S, Marletta G. SPM and TOF-SIMS investigation of the physical and chemical modification induced by tip writing of self-assembled monolayers. Mat Sci Eng C, 2003, 23: 7–12

    Article  Google Scholar 

  11. Porter MD, Bright TB, Allara DL, Chidsey CED. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc, 1987, 109: 3559–3568

    Article  CAS  Google Scholar 

  12. He J, Patitsas SN, Preston KF, Wolkow RA, Wayner DDM. Covalent bonding of thiophenes to Si(111) by a halogenation/thienylation route. Chem Phys Lett, 1998, 286: 508–514

    Article  CAS  Google Scholar 

  13. You YM, Ting Y, Kasim J, Song H, Fan XF, Ni ZH, Cao LZ, Jiang H, Shen DZ, Kuo JL, Shen ZX. Visualization and investigation of Si-C covalent bonding of single carbon nanotube grown on silicon substrate. Appl Phys Lett, 2008, 93: 103111

    Article  CAS  Google Scholar 

  14. Boukherroub R, Morin S, Wayner DDM, Bensebaa F, Sproule GI, Baribeau JM, Lockwood DJ. Ideal passivation of luminescent porous silicon by thermal, noncatalytic reaction with alkenes and aldehydes. Chem Mater, 2001, 13: 2002–2011

    Article  CAS  Google Scholar 

  15. Kim K, Kim NH, Park HK, HaY S, Han HS. New strategy for ready application of surface-enhanced resonance Raman scattering/surface-enhanced Raman scattering to chemical analysis of organic films on dielectric substrates. Appl Spectrosc, 2005, 59: 1217–1221

    Article  CAS  Google Scholar 

  16. Tian ZQ, Ren B, Li JF, Yang ZL. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun, 2007, 3514-3534

  17. Willets KA, Van Duyne RP. Localized surface plasmon spectroscopy and sensing. Ann Rev Phys Chem, 2007, 58: 267–297

    Article  CAS  Google Scholar 

  18. Stockle RM, Suh YD, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett, 2000, 318: 131–136

    Article  CAS  Google Scholar 

  19. Anderson MS. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett, 2000, 76: 3130–3132

    Article  CAS  Google Scholar 

  20. Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Opt Communun, 2000, 183: 333–336

    Article  CAS  Google Scholar 

  21. Pettinger B, Picardi G, Schuster R, Ertl G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry (Tokyo), 2000, 68: 942–949

    CAS  Google Scholar 

  22. Allongue P, de Villeneuve CH, Morin S, Boukherroub R, Wayner DDM. The preparation of flat H-Si(111) surfaces in 40% NH4F revisited. Electrochim Acta, 2000, 45: 4591–4598

    Article  CAS  Google Scholar 

  23. Xu D, Kang ET, Neoh KG, Zhang Y, Tay AAO, Ang SS, Lo MCY, Vaidyanathan K. Selective electroless plating of copper on (100)-oriented single crystal silicon surface modified by UV-induced coupling of 4-vinylpyridine with the H-terminated silicon. J Phys Chem B, 2002, 106: 12508–12516

    Article  CAS  Google Scholar 

  24. Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem, 1982. 86: 3391–3395

    Article  CAS  Google Scholar 

  25. Ren B, Picardi G, Pettinger B. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev Sci Instrum, 2004, 75: 837–841

    Article  CAS  Google Scholar 

  26. Wang X, Liu Z, Zhuang M.D, Zhang HM, Wang X, Xie ZX, Wu DY, Ren B, Tian ZQ. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl Phys Lett, 2007, 91: 101105

    Article  CAS  Google Scholar 

  27. Tashiro K, Matsushima K, Kobayashi M. Electrochemically-initiated polymerization reaction of 4-vinylpyridine on silver electrode surface: direct observation by the surface-enhanced Raman scattering technique. J Phys Chem, 1990, 94: 3197–3204

    Article  CAS  Google Scholar 

  28. Garrell RL, Beer KD. Surface-enhanced Raman scattering from 4-ethylpyridine and poly(4-vinylpyridine) on gold and silver electrodes. Langmuir, 1989, 5: 452–458

    Article  CAS  Google Scholar 

  29. Wu DY, Li JF, Ren B, Tian ZQ. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev, 2008, 37: 1025–1041

    Article  CAS  Google Scholar 

  30. Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem, 2009, 394: 1729–1745

    Article  CAS  Google Scholar 

  31. Liu Z, Wang X, Dai K, Jin S, Zeng ZC, Zhuang MD, Yang ZL, Wu DY, Ren B, Tian ZQ. Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect. J Raman Spectrosc, 2009 40, 1400–1406

    Article  CAS  Google Scholar 

  32. Cai WB, Ren B, Li XQ, She CX, Liu FM, Ca XW, Tian ZQ. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surf Sci, 1998, 406: 9–22

    Article  CAS  Google Scholar 

  33. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields. J Raman Spectrosc, 2005, 36: 541–550

    Article  CAS  Google Scholar 

  34. Notingher I, Elfick A. Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. J Phys Chem B, 2005, 109: 15699–15706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, M., Liu, Z., Ren, B. et al. Surface bonding on silicon surfaces as probed by tip-enhanced Raman spectroscopy. Sci. China Chem. 53, 426–431 (2010). https://doi.org/10.1007/s11426-010-0068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0068-1

Keywords

Navigation