Skip to main content
Log in

Tip-enhanced Raman spectroscopy: tip-related issues

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

After over 15 years of development, tip-enhanced Raman spectroscopy (TERS) is now facing a very important stage in its history. TERS offers high detection sensitivity down to single molecules and a high spatial resolution down to sub-nanometers, which make it an unprecedented nanoscale analytical technique offering molecular fingerprint information. The tip is the core element in TERS, as it is the only source through which to support the enhancement effect and provide the high spatial resolution. However, TERS suffers and will continue to suffer from the limited availability of TERS tips with a high enhancement, good stability, and high reproducibility. This review focuses on the tip-related issues in TERS. We first discuss the parameters that influence the enhancement and spatial resolution of TERS and the possibility to optimize the performance of a TERS system via an in-depth understanding of the enhancement mechanism. We then analyze the methods that have been developed for producing TERS tips, including vacuum-based deposition, electrochemical etching, electrodeposition, electroless deposition, and microfabrication, with discussion on the advantages and weaknesses of some important methods. We also tackle the issue of lifetime and protection protocols of TERS tips which are very important for the stability of a tip. Last, some fundamental problems and challenges are proposed, which should be addressed before this promising nanoscale characterization tool can exert its full potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. McCreery RL (2001) Meas Sci Technol 12(5):663

    Article  Google Scholar 

  2. Weber WH, Merlin R (2013) Raman scattering in materials science. Springer Science & Business Media, Berlin

    Google Scholar 

  3. Lawson EE, Barry BW, Williams AC, Edwards HGM (1997) J Raman Spectrosc 28(2–3):111–117

    Article  CAS  Google Scholar 

  4. Barron LD, Buckingham AD (1971) Mol Phys 20(6):1111–1119

    Article  CAS  Google Scholar 

  5. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  6. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84(77):1–20

    Article  CAS  Google Scholar 

  7. Nie S, Emory SR (1997) Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  8. Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121(43):9932–9939

    Article  CAS  Google Scholar 

  9. Le Ru EC, Meyer M, Etchegoin PG (2006) J Phys Chem B 110(4):1944–1948

    Article  CAS  Google Scholar 

  10. Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) J Am Chem Soc 129(51):16249–16256

    Article  CAS  Google Scholar 

  11. Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318(1–3):131–136

    Article  CAS  Google Scholar 

  12. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183(1–4):333–336

    Article  CAS  Google Scholar 

  13. Anderson MS (2000) Appl Phys Lett 76(21):3130–3132

    Article  CAS  Google Scholar 

  14. Pettinger B, Picardi G, Schuster R, Ertl G (2000) Electrochem Jpn 68:942–949

    CAS  Google Scholar 

  15. Zhang Z, Chen L, Sun M, Ruan P, Zheng H, Xu H (2013) Nanoscale 5(8):3249–3252

    Article  CAS  Google Scholar 

  16. Lantman EMV, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM (2012) Nat Nanotechnol 7(9):583–586

    Article  CAS  Google Scholar 

  17. Kumar N, Stephanidis B, Zenobi R, Wain AJ, Roy D (2015) Nanoscale 7(16):7133–7137

    Article  CAS  Google Scholar 

  18. Stadler J, Schmid T, Zenobi R (2011) ACS Nano 5(10):8442–8448

    Article  CAS  Google Scholar 

  19. Domke KF, Pettinger B (2009) J Raman Spectrosc 40(10):1427–1433

    Article  CAS  Google Scholar 

  20. Marquestaut N, Talaga D, Servant L, Yang P, Pauzauskie P, Lagugne-Labarthet F (2009) J Raman Spectrosc 40(10):1441–1445

    Article  CAS  Google Scholar 

  21. Ogawa Y, Toizumi T, Minami F, Baranov AV (2011) Phys Rev B 83(8):081302

    Article  CAS  Google Scholar 

  22. Lee N, Hartschuh RD, Mehtani D, Kisliuk A, Maguire JF, Green M, Foster MD, Sokolov AP (2007) J Raman Spectrosc 38(6):789–796

    Article  CAS  Google Scholar 

  23. Gucciardi PG, Valmalette JC (2010) Appl Phys Lett 97(26):263104

    Article  CAS  Google Scholar 

  24. Zhu L, Atesang J, Dudek P, Hecker M (2007) Mater Sci-Pol 25(1):19–31

    CAS  Google Scholar 

  25. Yeo BS, Amstad E, Schmid T, Stadler J, Zenobi R (2009) Small 5(8):952–960

    Article  CAS  Google Scholar 

  26. Xue L, Li W, Hoffmann GG, Goossens JGP, Loos J, de With G (2011) Macromolecules 44(8):2852–2858

    Article  CAS  Google Scholar 

  27. Domke KF, Zhang D, Pettinger B (2007) J Am Chem Soc 129(21):6708–6709

    Article  CAS  Google Scholar 

  28. Bailo E, Deckert V (2008) Angew Chem Int Ed 47(9):1658–1661

    Article  CAS  Google Scholar 

  29. Snopok B, Snitka V, Naumenko D, Bruzaite I, Serviene E (2013) Analyst 138(18):5371–5383

    Article  CAS  Google Scholar 

  30. Liu Z, Ding SY, Chen ZB, Wang X, Tian JH, Anema JR, Zhou XS, Wu DY, Ma BW, Xu X, Ren B, Tian ZQ (2011) Nat Commun 2:305

    Article  CAS  Google Scholar 

  31. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92(9):096101

    Article  CAS  Google Scholar 

  32. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36(6–7):541–550

    Article  CAS  Google Scholar 

  33. Ren B, Picardi G, Pettinger B, Schuster R, Ertl G (2005) Angew Chem Int Ed 44(1):139–142

    Article  CAS  Google Scholar 

  34. Domke KF, Pettinger B (2009) ChemPhysChem 10(11):1794–1798

    Article  CAS  Google Scholar 

  35. Liu Z, Wang X, Dai K, Jin S, Zeng ZC, Zhuang MD, Yang ZL, Wu DY, Ren B, Tian ZQ (2009) J Raman Spectrosc 40(10):1400–1406

    Article  CAS  Google Scholar 

  36. Horimoto NN, Tomizawa S, Fujita Y, Kajimoto S, Fukumura H (2014) Chem Commun 50(69):9862–9864

    Article  CAS  Google Scholar 

  37. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Nature 498(7452):82–86

    Article  CAS  Google Scholar 

  38. Steidtner J, Pettinger B (2008) Phys Rev Lett 100(23):236101

    Article  CAS  Google Scholar 

  39. Zhang WH, Yeo BS, Schmid T, Zenobi R (2007) J Phys Chem C 111(4):1733–1738

    Article  CAS  Google Scholar 

  40. Krug JT, Sanchez EJ, Xie XS (2002) J Chem Phys 116(24):10895–10901

    Article  CAS  Google Scholar 

  41. Pettinger B, Schambach P, Villagómez CJ, Scott N (2012) Annu Rev Phys Chem 63(1):379–399

    Article  CAS  Google Scholar 

  42. Sun WX, Shen ZX (2003) J Opt Soc Am A 20(12):2254–2259

    Article  Google Scholar 

  43. Notingher I, Elfick A (2005) J Phys Chem B 109(33):15699–15706

    Article  CAS  Google Scholar 

  44. Demming AL, Festy F, Huang F, Richards D (2005) J Korean Phys Soc 47:S1–S4

    Google Scholar 

  45. Neacsu CC, Steudle GA, Raschko MB (2005) Appl Phys B Lasers Opt 80(3):295–300

    Article  CAS  Google Scholar 

  46. Picardi G, Nguyen Q, Ossikovski R, Schreiber J (2007) Appl Spectrosc 61(12):1301–1305

    Article  CAS  Google Scholar 

  47. Hayazawa N, Saito Y, Kawata S (2004) Appl Phys Lett 85(25):6239–6241

    Article  CAS  Google Scholar 

  48. Kazemi-Zanjani N, Vedraine S, Lagugné-Labarthet F (2013) Opt Express 21(21):25271–25276

    Article  CAS  Google Scholar 

  49. Yang ZL, Aizpurua J, Xu HX (2009) J Raman Spectrosc 40(10):1343–1348

    Article  CAS  Google Scholar 

  50. Roth RM, Panoiu NC, Adams MM, Osgood RM, Neacsu CC, Raschke MB (2006) Opt Express 14(7):2921–2931

    Article  Google Scholar 

  51. Hartschuh A, Sánchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90(9):095503

    Article  CAS  Google Scholar 

  52. Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Phys Rev B 76(11):113409

    Article  CAS  Google Scholar 

  53. Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Surf Sci 603(10–12):1335–1341

    Article  CAS  Google Scholar 

  54. Yano TA, Ichimura T, Taguchi A, Hayazawa N, Verma P, Inouye Y, Kawata S (2007) Appl Phys Lett 91(12):121101

    Article  CAS  Google Scholar 

  55. Sun MT, Zhang ZL, Chen L, Xu HX (2013) Adv Opt Mater 1(6):449–455

    Article  Google Scholar 

  56. Stadler J, Oswald B, Schmid T, Zenobi R (2013) J Raman Spectrosc 44(2):227–233

    Article  CAS  Google Scholar 

  57. Uetsuki K, Verma P, Nordlander P, Kawata S (2012) Nanoscale 4(19):5931–5935

    Article  CAS  Google Scholar 

  58. Sun MT, Fang YR, Yang ZL, Xu HX (2009) Phys Chem Chem Phys 11(41):9412–9419

    Article  CAS  Google Scholar 

  59. Downes A, Salter D, Elfick A (2006) J Phys Chem B 110(13):6692–6698

    Article  CAS  Google Scholar 

  60. Zhang WH, Cui XD, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7(5):1401–1405

    Article  CAS  Google Scholar 

  61. Downes A, Salter D, Elfick A (2006) Opt Express 14(12):5216–5222

    Article  Google Scholar 

  62. Poborchii V, Tada T, Kanayama T, Geshev P (2009) J Raman Spectrosc 40(10):1377–1385

    Article  CAS  Google Scholar 

  63. Taguchi A, Hayazawa N, Saito Y, Ishitobi H, Tarun A, Kawata S (2009) Opt Express 17(8):6509–6518

    Article  CAS  Google Scholar 

  64. Palik ED (1998) Handbook of optical constants of solids III. Academic, San Diego

    Google Scholar 

  65. Cui XD, Zhang WH, Yeo BS, Zenobi R, Hafner C, Erni D (2007) Opt Express 15(13):8309–8316

    Article  CAS  Google Scholar 

  66. Yeo BS, Zhang WH, Vannier C, Zenobi R (2006) Appl Spectrosc 60(10):1142–1147

    Article  CAS  Google Scholar 

  67. Yeo BS, Schmid T, Zhang WH, Zenobi R (2007) Anal Bioanal Chem 387(8):2655–2662

    Article  CAS  Google Scholar 

  68. Demming AL, Festy F, Richards D (2005) J Chem Phys 122(18)

  69. Meng LY, Huang TX, Wang X, Chen S, Yang ZL, Ren B (2015) Opt Express 23(11):13804–13813

    Article  Google Scholar 

  70. Downes A, Salter D, Elfick A (2006) Opt Express 14(23):11324–11329

    Article  Google Scholar 

  71. Zhang WH, Cui XD, Martin OJF (2009) J Raman Spectrosc 40(10):1338–1342

    Article  CAS  Google Scholar 

  72. Angulo AM, Noguez C, Schatz GC (2011) J Phys Chem Lett 2(16):1978–1983

    Article  CAS  Google Scholar 

  73. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier, Amsterdam

    Google Scholar 

  74. Lin HX, Li JM, Liu BJ, Liu DY, Liu J, Terfort A, Xie ZX, Tian ZQ, Ren B (2013) Phys Chem Chem Phys 15(12):4130–4135

    Article  CAS  Google Scholar 

  75. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Annu Rev Phys Chem 1(1):601–626

    Article  CAS  Google Scholar 

  76. Schlücker S (2014) Angew Chem Int Ed 53(19):4756–4795

    Article  CAS  Google Scholar 

  77. Wang HT, Tian T, Zhang Y, Pan ZQ, Wang Y, Xiao ZD (2008) Langmuir 24(16):8918–8922

    Article  CAS  Google Scholar 

  78. Deckert V, Deckert-Gaudig T, Diegel M, Gotz I, Langeluddecke L, Schneidewind H, Sharma G, Singh P, Singh P, Trautmann S, Zeisberger M, Zhang Z (2015) Faraday Discuss 177:9–20

    Article  CAS  Google Scholar 

  79. Wang X, Liu Z, Zhuang MD, Zhang HM, Wang X, Xie ZX, Wu DY, Ren B, Tian ZQ (2007) Appl Phys Lett 91(10):101105

    Article  CAS  Google Scholar 

  80. Mino T, Saito Y, Verma P (2014) ACS Nano 8(10):10187–10195

    Article  CAS  Google Scholar 

  81. Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79(4):645–648

    Article  CAS  Google Scholar 

  82. Novotny L, Stranick SJ (2006) Annu Rev Phys Chem 57(1):303–331

    Article  CAS  Google Scholar 

  83. Mishra N, Kumar GVP (2012) Plasmonics 7(2):359–367

    Article  CAS  Google Scholar 

  84. Blum C, Opilik L, Atkin JM, Braun K, Kämmer SB, Kravtsov V, Kumar N, Lemeshko S, Li JF, Luszcz K, Maleki T, Meixner AJ, Minne S, Raschke MB, Ren B, Rogalski J, Roy D, Stephanidis B, Wang X, Zhang D, Zhong JH, Zenobi R (2014) J Raman Spectrosc 45(1):22–31

    Article  CAS  Google Scholar 

  85. Bryant PJ, Kim HS, Zheng YC, Yang R (1987) Rev Sci Instrum 58(6):1115

    Article  Google Scholar 

  86. Melmed AJ (1991) J Vac Sci Technol B 9(2):601–608

    Article  CAS  Google Scholar 

  87. Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75(4):837–841

    Article  CAS  Google Scholar 

  88. Billot L, Berguiga L, de la Chapelle ML, Gilbert Y, Bachelot R (2005) Eur Phys J Appl Phys 31(2):139–145

    Article  CAS  Google Scholar 

  89. Wang X, Cui Y, Ren B (2007) Chem J Chinese Univ 28(3):522–525

    CAS  Google Scholar 

  90. Li ZL, Wu TH, Niu ZJ, Huang W, Nie HD (2004) Electrochem Commun 6(1):44–48

    Article  CAS  Google Scholar 

  91. Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D (2009) Rev Sci Instrum 80(3):033701

    Article  CAS  Google Scholar 

  92. Kharintsev SS, Noskov AI, Hoffmann GG, Loos J (2011) Nanotechnology 22(2):025202

    Article  CAS  Google Scholar 

  93. Snitka V, Rodrigues RD, Lendraitis V (2011) Microelectron Eng 88(8):2759–2762

    Article  CAS  Google Scholar 

  94. Boyle MG, Feng L, Dawson P (2008) Ultramicroscopy 108(6):558–566

    Article  CAS  Google Scholar 

  95. Gingery D, Buehlmann P (2007) Rev Sci Instrum 78(11):113703

    Article  CAS  Google Scholar 

  96. Lopes M, Toury T, de La Chapelle ML, Bonaccorso F, Gucciardi PG (2013) Rev Sci Instrum 84(7):073702

    Article  CAS  Google Scholar 

  97. Park J, Hong T, Lee N, Kim K, Seo Y (2011) Curr Appl Phys 11(6):1332–1336

    Article  Google Scholar 

  98. Kharintsev S, Hoffmann G, Fishman A, Salakhov MK (2013) J Phys D Appl Phys 46(14):145501

    Article  CAS  Google Scholar 

  99. Roy D, Williams CM, Mingard K (2010) J Vac Sci Technol B 28(3):631–634

    Article  CAS  Google Scholar 

  100. Gorbunov AA, Wolf B, Edelmann J (1993) Rev Sci Instrum 64(8):2393

    Article  CAS  Google Scholar 

  101. Dickmann K, Demming F, Jersch J (1996) Rev Sci Instrum 67(3):845–846

    Article  CAS  Google Scholar 

  102. Iwami M, Uehara Y, Ushioda S (1998) Rev Sci Instrum 69(11):4010–4011

    Article  CAS  Google Scholar 

  103. Lloyd JS, Williams A, Rickman RH, McCowen A, Dunstan PR (2011) Appl Phys Lett 99(14):143108

    Article  CAS  Google Scholar 

  104. Hodgson PA, Wang Y, Mohammad AA, Kruse P (2013) Rev Sci Instrum 84(2):026109

    Article  CAS  Google Scholar 

  105. Ibe JP, Bey PP Jr, Brandow SL, Brizzolara RA, Burnham NA, Dilella DP, Lee KP, Marrian CRK, Colton RJ (1990) J Vac Sci Technol A 8(4):3570–3575

    Article  CAS  Google Scholar 

  106. Stadler J, Schmid T, Zenobi R (2010) Nano Lett 10(11):4514–4520

    Article  CAS  Google Scholar 

  107. Zhang C, Gao B, Chen LG, Meng QS, Yang H, Zhang R, Tao X, Gao HY, Liao Y, Dong ZC (2011) Rev Sci Instrum 82(8):083101

    Article  CAS  Google Scholar 

  108. Jiang N, Foley ET, Klingsporn JM, Sonntag MD, Valley NA, Dieringer JA, Seideman T, Schatz GC, Hersam MC, Van Duyne RP (2012) Nano Lett 12(10):5061–5067

    Article  CAS  Google Scholar 

  109. Sasaki SS, Perdue SM, Perez AR, Tallarida N, Majors JH, Apkarian VA, Lee J (2013) Rev Sci Instrum 84(9):096109

    Article  CAS  Google Scholar 

  110. Yi KJ, He XN, Zhou YS, Xiong W, Lu YF (2008) Rev Sci Instrum 79(7):073706

    Article  CAS  Google Scholar 

  111. You YM, Purnawirman NA, Hu HL, Kasim J, Yang HP, Du CL, Yu T, Shen ZX (2010) J Raman Spectrosc 41(10):1156–1162

    Article  CAS  Google Scholar 

  112. Fujita Y, Chiba R, Lu G, Horimoto NN, Kajimoto S, Fukumura H, Uji-i H (2014) Chem Commun 50(69):9839–9841

    Article  CAS  Google Scholar 

  113. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) J Phys Chem Lett 1(24):3427–3432

    Article  CAS  Google Scholar 

  114. Schlegel VL, Cotton TM (1991) Anal Chem 63(3):241–247

    Article  CAS  Google Scholar 

  115. Golan Y, Margulis L, Rubinstein I (1992) Surf Sci 264(3):312–326

    Article  CAS  Google Scholar 

  116. Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) J Phys Chem B 109(16):7969–7975

    Article  CAS  Google Scholar 

  117. Lüssem B, Karthäuser S, Haselier H, Waser R (2005) Appl Surf Sci 249(1–4):197–202

    Article  CAS  Google Scholar 

  118. DeRose JA, Thundat T, Nagahara LA, Lindsay SM (1991) Surf Sci 256(1–2):102–108

    Article  CAS  Google Scholar 

  119. Asghari-Khiavi M, Wood BR, Hojati-Talemi P, Downes A, McNaughton D, Mechler A (2012) J Raman Spectrosc 43(2):173–180

    Article  CAS  Google Scholar 

  120. Peng L, Lee H, Teizer W, Liang H (2009) Wear 267(5–8):1177–1180

    Article  CAS  Google Scholar 

  121. Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD (2009) J Phys Chem C 113(19):8158–8161

    Article  CAS  Google Scholar 

  122. Schmid T, Yeo BS, Leong G, Stadler J, Zenobi R (2009) J Raman Spectrosc 40(10):1392–1399

    Article  CAS  Google Scholar 

  123. Kawata S, Shalaev VM (2011) Tip enhancement. Elsevier, Amsterdam

    Google Scholar 

  124. Youssef KMS, Koch CC, Fedkiw PS (2004) Corros Sci 46(1):51–64

    Article  CAS  Google Scholar 

  125. Shacham–Diamand Y, Osaka T, Datta M, Ohba T (2009) Advanced nanoscale ULSI interconnects fundamentals and applications. Springer, New York

    Book  Google Scholar 

  126. Saito Y, Murakami T, Inouye Y, Kawata S (2005) Chem Lett 34(7):920–921

    Article  CAS  Google Scholar 

  127. Brejna PR, Griffiths PR (2010) Appl Spectrosc 64(5):493–499

    Article  CAS  Google Scholar 

  128. Zhang Q, Wu M, Zhao W (2005) Surf Coat Tech 192(2–3):213–219

    Article  CAS  Google Scholar 

  129. Saito Y, Wang JJ, Batchelder DN, Smith DA (2003) Langmuir 19(17):6857–6861

    Article  CAS  Google Scholar 

  130. Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Appl Phys Lett 86(26):263111

    Article  CAS  Google Scholar 

  131. Vakarelski IU, Higashitani K (2006) Langmuir 22(7):2931–2934

  132. Sqalli O, Bernal MP, Hoffmann P, Marquis-Weible F (2000) Appl Phys Lett 76(15):2134–2136

  133. Umakoshi T, Yano TA, Saito Y, Verma P (2012) Appl Phys Express 5(5):052001–052003

  134. Okamoto T, Yamaguchi I (2001) J Microsc-oxford 202(1):100–103

  135. Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Phys Rev Lett 95(1):017402

    Article  CAS  Google Scholar 

  136. Weber-Bargioni A, Schwartzberg A, Cornaglia M, Ismach A, Urban JJ, Pang YJ, Gordon R, Bokor J, Salmeron MB, Ogletree DF, Ashby P, Cabrini S, Schuck PJ (2011) Nano Lett 11(3):1201–1207

    Article  CAS  Google Scholar 

  137. Zou Y, Steinvurzel P, Yang T, Crozier KB (2009) Appl Phys Lett 94(17):171107

    Article  CAS  Google Scholar 

  138. De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani LC, Di Fabrizio E (2010) Nat Nanotechnol 5(1):67–72

    Article  CAS  Google Scholar 

  139. Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2012) Rev Sci Instrum 83(11):113704

    Article  CAS  Google Scholar 

  140. Fleischer M, Weber-Bargioni A, Altoe MVP, Schwartzberg AM, Schuck PJ, Cabrini S, Kern DP (2011) ACS Nano 5(4):2570–2579

    Article  CAS  Google Scholar 

  141. Christiansen SH, Becker M, Fahlbusch S, Michler J, Sivakov V, Andra G, Geiger R (2007) Nanotechnology 18(3):035503

    Article  CAS  Google Scholar 

  142. Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Science 338(6112):1317–1321

    Article  CAS  Google Scholar 

  143. Bek A, De Angelis F, Das G, Di Fabrizio E, Lazzarino M (2011) Micron 42(4):313–317

    Article  CAS  Google Scholar 

  144. Imad M, Atsushi T, Yuika S, Satoshi K, Verma P (2015) Appl Phys Express 8(3):032401

    Article  CAS  Google Scholar 

  145. Yang Y, Li ZY, Nogami M, Tanemura M, Huang Z (2014) RSC Adv 4(9):4718–4722

    Article  CAS  Google Scholar 

  146. Macpherson JV, Unwin PR (2000) Anal Chem 72(2):276–285

    Article  CAS  Google Scholar 

  147. Karral K, Grober RD (1995) Appl Phys Lett 66(14):1842–1844

    Article  Google Scholar 

  148. Zhang D, Wang X, Braun K, Egelhaaf HJ, Fleischer M, Hennemann L, Hintz H, Stanciu C, Brabec CJ, Kern DP, Meixner AJ (2009) J Raman Spectrosc 40(10):1371–1376

    Article  CAS  Google Scholar 

  149. Roy D, Wang J, Welland ME (2006) Faraday Discuss 132:215–225

    Article  CAS  Google Scholar 

  150. Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Phys Rev B 73(19):193406

    Article  CAS  Google Scholar 

  151. Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V (2001) J Microsc-Oxford 202:72–76

    Article  CAS  Google Scholar 

  152. Christiane H, Lukas N (2008) Nanotechnology 19(38):384012

    Article  CAS  Google Scholar 

  153. Le NV, Mevellec JY, Minea T, Louarn G (2012) Int J Opt 2012:591083–591088

    Google Scholar 

  154. Johnson TW, Lapin ZJ, Beams R, Lindquist NC, Rodrigo SG, Novotny L, Oh SH (2012) ACS Nano 6(10):9168–9174

    Article  CAS  Google Scholar 

  155. Stadler J, Schmid T, Opilik L, Kuhn P, Dittrich PS, Zenobi R (2011) Beilstein J Nanotech 2(1):509–515

    Article  CAS  Google Scholar 

  156. Agapov RL, Sokolov AP, Foster MD (2013) J Raman Spectrosc 44(5):710–716

    Article  CAS  Google Scholar 

  157. Barbry M, Koval P, Marchesin F, Esteban R, Borisov AG, Aizpurua J, Sánchez-Portal D (2015) Nano Lett 15(5):3410–3419

    Article  CAS  Google Scholar 

  158. Zhang C, Chen BQ, Li ZY (2015) J Phys Chem C 119(21):11858–11871

    Article  CAS  Google Scholar 

  159. (2015) IRIS TERS probes. http://www.brukerafmprobes.com/t-IRIS-TERS-Probes.aspx. Accessed 14 Jan 2015

Download references

Acknowledgement

We acknowledge the support from the Ministry of Science and Technology (MOST, 2011YQ03012406 and 2013CB933703), National Natural Science Foundation of China (NSFC; 21227004, 21321062, and J1310024), and Ministry of Education of the People’s Republic of China (MOE, IRT13036).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Wang or Bin Ren.

Additional information

Published in the topical collection Nanospectroscopy with guest editor Mustafa Culha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TX., Huang, SC., Li, MH. et al. Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem 407, 8177–8195 (2015). https://doi.org/10.1007/s00216-015-8968-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8968-8

Keywords

Navigation