Skip to main content
Log in

A Ga2O·11Al2O3 nanonet prepared by interfacial reaction growth approach and its application in fabricating GaN nanowires

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A Ga2O·11Al2O3 nanonet was synthesized by using Ga2O3 powder as the precursor to generate Ga2O vapor in H2 atmosphere which further reacted with Al2O3 at 730 °C to form Ga2O·11Al2O3 at the interfaces of a porous anodic aluminum oxide (AAO) template. The prepared Ga2O·11Al2O3 nanonet then served as a Ga2O-stablizing reservoir to fabricate single crystal GaN nanowires. The residual Ga2O3 powder at the surface of the produced Ga2O·11Al2O3 nanonet and the metallic Ga or Ga2O from the Ga2O·11Al2O3 decomposition reacted with ammonia to yield GaN nanowires at 780 °C. The reaction mechanisms were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  2. Xia YN, Yang PD, Sun, Y, Wu, Y, Mayers B, Gates B, Yin, Y, Kim F, Yan H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater, 2003, 15: 353–389

    Article  CAS  Google Scholar 

  3. Goldberger J, He RR, Zhang YF, Lee SW, Yan HQ, Choi HJ, Yang PD. Single-crystal gallium nitride nanotubes. Nature, 2003,422(6932): 599–602

    Article  CAS  Google Scholar 

  4. Han WQ, Fan SS, Li QQ, Hu YD. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277: 1287–1289

    Article  CAS  Google Scholar 

  5. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66–69

    Article  CAS  Google Scholar 

  6. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947–1949

    Article  CAS  Google Scholar 

  7. Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971–1975

    Article  CAS  Google Scholar 

  8. Duan XF, Lieber CM. Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc, 2000, 122: 188–189

    Article  CAS  Google Scholar 

  9. Kim HM, Kim DS, Park YS, Kim DY, Kang TW, Chung KS. Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater, 2002, 14: 991–993

    CAS  Google Scholar 

  10. Yoshida S, Misawa S, Gonda S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown gallium nitride films by using aluminum nitride-coated sapphire substrates. Appl Phys Lett, 1983, 42: 427–429

    Article  CAS  Google Scholar 

  11. Mesrine M, Grandjean N, Massies J. Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy. Appl Phys Lett, 1998, 72: 350–352

    Article  CAS  Google Scholar 

  12. Qiu T, Wu XL, Fu RKY, Fan JY, Yang LW, Chu PK, Siu GG. Mocontaining diamond-like carbon films with blue emission. J Cryst Growth, 2005, 281: 538–542

    Article  CAS  Google Scholar 

  13. Wang XD, Neff C, Graugnard E, Ding Y, King JS, Pranger LA, Tannenbaum R, Wang ZL, Summers CJ. Photonic crystals fabricated using patterned nanorod arrays. Adv Mater, 2005, 17: 2103–2106

    Article  CAS  Google Scholar 

  14. Wu X, Yamilov A, Liu X, Li, S, Dravid VP, Chang RPH, Cao H. Ultraviolet photonic crystal laser. Appl Phys Lett, 2004, 85: 3657–3659

    Article  CAS  Google Scholar 

  15. Guy IL, Zheng Z, Wintrebert-Fouquet M, Butcher KSA, Chen P, Tansley TL. Piezoelectricity in indium nitride. J Cryst Growth, 2004, 269: 72–76

    Article  CAS  Google Scholar 

  16. Girgsdies F, Ressler T, Wild U, Wubben T, Balk TJ, Dehm G, Zhou L, Gunther S, Arzt E, Imbihl R, Schlögl R. Strained thin copper films as model catalysts in the materials gap. Catal Lett, 2005, 102: 91–97

    Article  CAS  Google Scholar 

  17. Soukoulis CM ed. Photonic Crystals and Light Localization in the 21st Century. Dordrecht: Kluwer, 2001

    Google Scholar 

  18. Johnson SG, Fan S, Mekis A, Joannopoulos JD. Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap. Appl Phys Lett, 2001, 78: 3388–3390

    Article  CAS  Google Scholar 

  19. Vuèkoviæ J, Lonèar M, Mabuchi H, Scherer A. Design of photonic crystal microcavities for cavity QED. Phys Rev E, 2001, 65: 016608

    Article  Google Scholar 

  20. Srinivasan K, Painter O. Momentum space design of high-Q photonic crystal optical cavities. Opt Express, 2002, 10: 670–684

    Google Scholar 

  21. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–30

    Article  CAS  Google Scholar 

  22. Yu JF, Wang F, Wang Y, Gao H, Li JL, Wu K. Interfacial reaction growth approach to preparing patterned nanomaterials and beyond. Chem Soc Rev, 2010, DOI: 0.1039/b812787p

  23. Wang Y, Wu K. As a whole: Crystalline zinc aluminate nanotube array-nanonet. J Am Chem Soc, 2005, 127: 9686–9687

    Article  CAS  Google Scholar 

  24. Wang Y, Liao Q, Lei H, Zhang XP, Ai XC, Zhang JP, Wu K. Interfacial reaction growth: morphology, composition, and structure control in preparation of crystalline ZnxAlyOz nanonets. Adv Mater, 2006, 18: 943–947

    Article  CAS  Google Scholar 

  25. Liao Q, Wang Y, Li JL, Wu K, Ai XC, Zhang JP. Spatially confined light output of a crystalline zinc oxide nanonet laser. Appl Phys Lett, 2007, 91: 041103

    Article  Google Scholar 

  26. Wang, F. Wang Y, Yu JF, Xie YC, Li JL, Wu K. Template-assisted preparations of crystalline Mo and Cu nanonets. J Phys Chem C, 2008, 112: 13121–13125

    Article  CAS  Google Scholar 

  27. Gao H, Mu C, Wang F, Xu DS, Wu K, Xie YC, Liu S, Wang EG, Xu J, Yu DP. Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template. J Appl Phys, 2003, 93: 5602–5605

    Article  CAS  Google Scholar 

  28. Wang F, Wei QS, Zhang YL, Wu K, Xie YC. Preparation of porous anodic aluminum oxide in water-deficient electrolytes. Acta Phys-Chim Sin, 2004, 9: 1134–1137

    Google Scholar 

  29. Radzilowski RH. Preparation of gallium(I) beta-alumina. Inorg Chem, 1969, 8: 994–996

    Article  CAS  Google Scholar 

  30. Hutter JC. High temperature metallography. In: Pascal P, ed. Nouveau Traite de Chimie Minerale, Vol. VII. Paris: Masson et Cie, 1961

    Google Scholar 

  31. Greenwood NN. The chemistry of gallium. Adzan Inorg Chem Radiochem, 1963, 5: 91–134

    CAS  Google Scholar 

  32. Garton G, Powell HM. The crystal structure of gallium dichloride. J Inorg Nucl Chem, 1957, 4: 84–89

    Article  CAS  Google Scholar 

  33. Brewer FM, Chadwick JR, Garton G. Coordination compounds of Ga(I)–(II). J Inorg Nucl Chem, 1961, 23: 45–54

    Article  CAS  Google Scholar 

  34. Moulder JF, Stickle WF, Sobol PE, Bomben KD. Physical electronics. In: Chastain J, ed. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin-Elmer Corporation, 1992

    Google Scholar 

  35. Chen CC, Yeh CC. Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv Mater, 2000, 12: 738–741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wen, W. & Wu, K. A Ga2O·11Al2O3 nanonet prepared by interfacial reaction growth approach and its application in fabricating GaN nanowires. Sci. China Chem. 53, 438–444 (2010). https://doi.org/10.1007/s11426-010-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0066-3

Keywords

Navigation