Science China Chemistry

, Volume 53, Issue 1, pp 202–209 | Cite as

Isomerization of B6, B6 and B6+ clusters

  • GongMin Wei
  • ZhiFeng Pu
  • Rong Zou
  • GuoLiang Li
  • Qiong Luo


The interconversions between isomers with the same spin multiplicity of neutral B6 and charged B6 and B6+ clusters have been investigated at the B3LYP/6-311+G* level of theory, including determination of the minimum energy pathways with transition states connecting the corresponding reactants and products. In dynamic calculations, 26 isomers were optimized, including 11 novel isomers. In order to further refine the energies, single-point B3LYP/6-311+G(3df) calculations were carried out on the corresponding B3LYP/6-311+G* geometries of all isomers of B6, B6 and B6+ and the corresponding isomerization transition states. The stability of each isomer of B6 (singlet and triplet states), B6 (doublet state) and B6+ (doublet state) was analyzed from both thermodynamic and dynamic viewpoints.


B6 transition state intrinsic reaction coordinate barrier height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams RM. Boron, Metallo-Boron Compounds, and Boranes. New York: Interscience Publishers, 1964Google Scholar
  2. 2.
    Matkovich VI. Boron and Refractory Borides. Berlin: Springer-Verlag, 1977Google Scholar
  3. 3.
    He J, Wu E, Wang H, Liu R, Tian Y. Ionicities of boron-boron bonds in B12 icosahedra. Phys Rev Lett, 2005, 94: 015504CrossRefGoogle Scholar
  4. 4.
    Szwacki NG, Sadrzadeh A, Yakobson BI. B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett, 2007 98: 166804CrossRefGoogle Scholar
  5. 5.
    Szwacki NG, Sadrzadeh A, Yakobson BI. Erratum: B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett, 2008, 100: 159901CrossRefGoogle Scholar
  6. 6.
    Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R. Boron cluster cations: Transition from planar to cylindrical structures. Angew Chem Int Ed, 2007, 46: 8503–8506CrossRefGoogle Scholar
  7. 7.
    Demirbas A. Hydrogen and boron as recent alternative motor fuels. Energy Sources, 2005, 27: 741–748CrossRefGoogle Scholar
  8. 8.
    Eremets MI, Struzhikin VV, Mao H, Hemley RJ. Superconductivity in boron. Science, 2001, 293: 272–274CrossRefGoogle Scholar
  9. 9.
    Reisch MS. High-performance fibers find expanding military, industrial uses. Chem Eng News, 1987, 65: 9–14Google Scholar
  10. 10.
    Hanley L, Whitten JL, Anderson SL. Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities. J Phys Chem, 1988, 92: 5803–5812CrossRefGoogle Scholar
  11. 11.
    Ray AK, Howard IA, Kanal KM. Structure and binding in small neutral and cationic boron clusters. Phys Rev B, 1992, 45: 14247–14255CrossRefGoogle Scholar
  12. 12.
    Kato H, Tanaka E. Stabilities of small Ben and Bn clusters (4≤n≤8) by vibrational analysis. J Comput Chem, 1991, 12: 1097–1109CrossRefGoogle Scholar
  13. 13.
    Boustani I. Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n=2−14). Phys Rev B, 1997, 55: 16426–16438CrossRefGoogle Scholar
  14. 14.
    Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI, Zakrzewski VG. Photoelectron spectroscopy and ab initio study of B3 and B4 anions and their neutrals. J Phys Chem A, 2003, 107: 9319–9328CrossRefGoogle Scholar
  15. 15.
    Jin HW, Li QS. Structure and stability of B4, B4 + and B4 clusters. Phys Chem Chem Phys, 2003, 5: 1110–1115CrossRefGoogle Scholar
  16. 16.
    Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys, 2002, 117: 7917–7924CrossRefGoogle Scholar
  17. 17.
    Li QS, Jin HW. Structure and stability of B5, B5 +, and B5 clusters. J Phys Chem A, 2002, 106: 7042–7047CrossRefGoogle Scholar
  18. 18.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Steiner E, Fowler P W. Structure and bonding in B6 and B6: planarity and antiaromaticity. J Phys Chem A, 2003, 107: 1359–1369CrossRefGoogle Scholar
  19. 19.
    Li QS, Jin Q, Luo Q, Tang AQ, Yu JK, Zhang HX. Structure and stability of B6, B6 + and B6 clusters. Int J Quantum Chem, 2003, 94: 269–278CrossRefGoogle Scholar
  20. 20.
    Ma J, Li Z, Fan K, Zhou M. Density functional theory study of the B6, B6 +, B6 , and B6 2− clusters. Chem Phys Lett, 2003, 372: 708–716CrossRefGoogle Scholar
  21. 21.
    Li QS, Gong LF, Gao ZM. Structures and stabilities of B7, B7 + and B7 clusters. Chem Phys Lett, 2004, 390: 220–227CrossRefGoogle Scholar
  22. 22.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. Electronic structure, isomerism, and chemical bonding in B7 and B7. J Phys Chem A, 2004, 108: 3509–3517CrossRefGoogle Scholar
  23. 23.
    Li QS, Zhao Y, Xu WG, Li N. Structure and stability of B8 clusters. Int J Quantum Chem, 2005, 101: 219–229CrossRefGoogle Scholar
  24. 24.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev, 2006, 250: 2811–2866CrossRefGoogle Scholar
  25. 25.
    Niu J, Rao BK, Jena PJ. Atomic and electronic structures of neutral and charged boron and boron-rich clusters. J Chem Phys, 1997, 107: 132–140CrossRefGoogle Scholar
  26. 26.
    Park JH, Lee JI, Kim MK, Oh YK, Cho HS. Ab-initio study of the structure and the binding in small boron clusters. J Korean Phys Soc, 1999, 34: 268–274Google Scholar
  27. 27.
    Parr RG, Yang W. Density-functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989Google Scholar
  28. 28.
    Becke AD. Density-functional thermochemistry III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652CrossRefGoogle Scholar
  29. 29.
    Gonzalez C, Schlegel HB. An improved algorithm for reaction path following. J Chem Phys, 1989, 90: 2154–2161CrossRefGoogle Scholar
  30. 30.
    Gonzalez C, Schlegel HB. Reaction path following in mass-weighted internal coordinates. J Phys Chem, 1990, 94: 5523–5527CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian03; Pittsburgh PA: Gaussian, Inc., 2003Google Scholar
  32. 32.
    Kato H, Yamashita K, Morokuma K. Ab initio MO study of neutral and cationic boron clusters. Chem Phys Lett, 1992, 190: 361–366CrossRefGoogle Scholar
  33. 33.
    Ricca A, Bauschlicher CW. The structure and stability of Bn + clusters. Chem Phys, 1996, 208: 233–242CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • GongMin Wei
    • 1
  • ZhiFeng Pu
    • 2
  • Rong Zou
    • 3
  • GuoLiang Li
    • 2
    • 3
  • Qiong Luo
    • 2
    • 3
  1. 1.Department of PhysicsCapital Normal UniversityBeijingChina
  2. 2.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina
  3. 3.Center for Computational Quantum ChemistrySouth China Normal UniversityGuangzhouChina

Personalised recommendations