Skip to main content
Log in

Magnetic molecular materials with paramagnetic lanthanide ions

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The diverse magnetic properties of lanthanide-based magnetic molecular materials are introduced in the following organization. First, the general aspects of magnetic molecular materials and electronic states of lanthanide ions are introduced. Then the structures and magnetic properties are described and analyzed for molecules with one lanthanide ion, 4f-4f, 4f-3d and 4f-p magnetic coupling interactions. In each section, magnetic coupling, magnetic ordering and magnetic relaxation phenomenon are briefly reviewed using some examples. Finally, some possibilities of developing magnetic molecular materials containing lanthanide ions are discussed in the outlook part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulliger F, Landolt M, Vetsch H. Rare-earth ferricyanides and chromicyanides LnT(CN)6·nH2O. J Solid State Chem, 1976, 18: 283–291

    Article  CAS  Google Scholar 

  2. Miller J S, Drillon M. Magnetism: Molecules to Materials. Vol. V. Weinheim: Wiley-VCH, 2005

    Google Scholar 

  3. Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev, 2002, 102: 2369–2388

    Article  CAS  Google Scholar 

  4. Groenendijk H A, Duyneveldt A J, Willet R D. Experimental study of the effect of domains on the A.C. susceptibility of the weak ferromagnet (C3H7NH3)2MnCl4. Physica B, 1980, 101: 320–328

    Article  CAS  Google Scholar 

  5. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc, 2003, 125: 8694–8695

    Article  CAS  Google Scholar 

  6. Ishikawa N, Sugita M, Wernsdorfer W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocy-aninato) terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed, 2005, 44: 2931–2935

    Article  CAS  Google Scholar 

  7. Ishikawa N, Sugita M, Okubo T, Tanaka N, Iino T, Kaizu Y. Deter-mination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorg Chem, 2003, 42: 2440–2446

    Article  CAS  Google Scholar 

  8. Ishikawa N, Iino T, Kaizu Y. Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic yttrium(III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A, 2002, 106: 9543–9550

    Article  CAS  Google Scholar 

  9. Ishikawa N, Sugita M, Ishikaw T, Koshihara S, Kaizu Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: A new category of magnets at the single-molecular level. J Phys Chem B, 2004, 108: 11265–11271

    Article  CAS  Google Scholar 

  10. Ishikawa N, Sugita M, Tanaka N, Ishikawa T, Koshihara S, Kaizu Y. Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. Inorg Chem, 2004, 43: 5498–5500

    Article  CAS  Google Scholar 

  11. Takamatsu S, Ishikawa T, Koshihara S, Ishikawa N. Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. Inorg Chem, 2007, 46: 7250–7252

    Article  CAS  Google Scholar 

  12. Ishikawa N, Mizuno Y, Takamatsu S, Ishikawa T, Koshihara S. Effects of chemically induced contraction of a coordination Polyhedron, on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a kramers ground state, Inorg Chem, 2008, 47:10217–10219

    Article  CAS  Google Scholar 

  13. Ishikawa N. Single molecule magnet with single lanthanide ion. Polyhedron, 2007, 26: 2147–2153

    Article  CAS  Google Scholar 

  14. Ishikawa N, Sugita M, Wernsdorfer W. Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato) holmium anion. J Am Chem Soc, 2005, 127: 3650–3651

    Article  CAS  Google Scholar 

  15. AlDamen M A, Clemente-Juan J M, Coronado E, Martí-Gastaldo C, Gaita-Arińo A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc, 2008, 130: 8874–8875

    Article  CAS  Google Scholar 

  16. AlDamen M A, Cardona-Serra S, Clemente-Juan J M, Coronado E, Gaita-Ario A, Mart-Gastaldo C, Luis F, Montero O. Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13−(LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg Chem, 2009, 48: 3467–3479

    Article  CAS  Google Scholar 

  17. Ma B Q, Gao S, Su G, Xu G X, Cyano-bridged 4f-3d coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior. Angew Chem Int Ed, 2001, 40: 434–437

    Article  CAS  Google Scholar 

  18. Gao S, Su G, Yi T, Ma B Q. Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth-transition-metal complexes. Phys Rev B, 2001, 63: 054431

    Article  Google Scholar 

  19. Liu Q, Li J, Gao S, Ma B Q, Zhou Q, Bei Y, Liu H. Anions controlled 2D assembly of La-Cu cation array and its unusual magnetic properties. Chem Commun, 2000, 1685–1686

  20. Zhang Y Z, Duan G, Sato O, Gao S. Structures and magnetism of cyano-bridged grid-like two-dimensional 4f-3d arrays. J Mater Chem, 2006, 16: 2625–2634

    Article  CAS  Google Scholar 

  21. Sugita M, Ishikawa N, Ishikawa T, Koshihara S, Kaizu Y. Static magnetic-field-induced phase lag in the magnetization response of tris(dipicolinato)lanthanides. Inorg Chem, 2006, 45: 1299–1304

    Article  CAS  Google Scholar 

  22. Sweet L E, Roy L E, Meng F, Hughbanks T. Ferromagnetic coupling in hexanuclear Gadolinium gadolinium clusters. J Am Chem Soc, 2006, 128: 10193–10201

    Article  CAS  Google Scholar 

  23. Roy L E, Hughbanks T. Magnetic coupling in dinuclear Gd complexes. J Am Chem Soc, 2006, 128: 568–575

    Article  CAS  Google Scholar 

  24. Liu S, Gelmini L, Rettig S J. Synthesis and characterization of lanthanide [Ln(L)]2 complexes of N4O3 amine phenol ligands with phenolate oxygen bridges: evidence for very weak magnetic exchange between lanthanide ions. J Am Chem Soc, 1992, 114: 6081–6087

    Article  CAS  Google Scholar 

  25. Costes J P, Dahan F, Dupuis A. Homo-(4f, 4f) and heterodimetallic (4f, 4f′) complexes. The first structurally characterized example of a heterodimetallic (Yb, La) complex (1′). Magnetic properties of 1′ and of a homodinuclear (Gd, Gd) analogue. Inorg Chem, 1998, 37: 153–155

    Article  CAS  Google Scholar 

  26. Costes J P, Clemente-Juan J M, Dahan F. Unprecedented ferromagnetic interaction in homobinuclear erbium and Gadolinium complexes: structural and magnetic studies. Angew Chem Int Ed, 2002, 41: 323–325

    Article  CAS  Google Scholar 

  27. Hatscher S T, Urland W. Unexpected appearance of molecular ferromagnetism in the ordinary acetate [{Gd(OAc)3(H2O)2 2]4H2O}. Angew Chem Int Ed, 2003, 42: 2862–2864

    Article  CAS  Google Scholar 

  28. Hou H, Li G, Li L, Zhu Y, Meng X, Fan Y. Synthesis, crystal structures, and magnetic properties of three novel ferrocenecarboxylato-bridged lanthanide dimers. Inorg Chem, 2003, 42: 428–435

    Article  CAS  Google Scholar 

  29. Gatteschi D, Sessoli R, Villain J. Molecular Nanomagnets. New York: Oxford University, 2006

    Book  Google Scholar 

  30. Zheng Y, Lan Y, Anson C E, Powell A K. Anionperturbed magnetic slow relaxation in planar Dy4 clusters. Inorg Chem, 2008, 47: 10813–10815

    Article  CAS  Google Scholar 

  31. Tang J, Hewitt I, Madhu N T, Chastanet G, Wernsdorfer W, Anson C E, Benelli C, Sessoli R, Powell A K. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed, 2006, 45: 1729–1733

    Article  CAS  Google Scholar 

  32. Liu C, Hu H, Yang X. A practicable parameter describing magnetic interactions. Chem Phys Lett, 2001, 349: 89–94

    Article  CAS  Google Scholar 

  33. Bencini A, Benelli C, Caneschi A, Carlin R L, Dei A, Gatteschi D. Crystal and molecular structure of and magnetic coupling in two complexes containing Gadolinium(III) and copper(II) ions. J Am Chem Soc, 1985, 107: 8128–8136

    Article  CAS  Google Scholar 

  34. Koner R, Lee G, Wang Y, Wei H, Mohanta S. Two new diphenoxo-bridged discrete dinuclear CuIIGdIII compounds with cyclic diimino moieties: syntheses, structures, and magnetic properties. Eur J Inorg Chem, 2005, 1500–1505

  35. Cirera J, Ruiz E. Exchange coupling in (CuGdIII)-Gd-II dinuclear complexes: A theoretical perspective. C R Chimie, 2008, 11: 1227–1134

    CAS  Google Scholar 

  36. Costes J P, Dahan F, Dupuis A, Laurent J P. Is ferromagnetism an intrinsic property of the CuII/GdIII couple? 1. Structures and magnetic properties of two novel dinuclear complexes with a μ-Phenolato-μ-Oximato (Cu,Gd) core. Inorg Chem, 2000, 39: 169–173

    Article  CAS  Google Scholar 

  37. Ramade I, Kahn O, Jeannin Y, Robert F. Design and magnetic properties of a magnetically isolated GdIIICuII pair. Crystal structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3Cu(salen)], [Gd(hfa)3Cu(salen) (meim)], and [La(hfa)3(H2O)Cu(salen)] [hfa = hexafluoroacetylacetonato, salen = N,N′-ethylenebis(salicylideneaminato), meim = 1-methylimidazole]. Inorg Chem, 1997, 36: 930–936

    Article  CAS  Google Scholar 

  38. Sasaki M, Horiuchi H, Kumagai M, Sakamoto M, Sakiyama H, Nishida Y, Sadaoka Y, Ohba M, Okawa H. A novel discrete d-f heterobinuclear complex designed from tetrahedrally distorted [Cu(salabza)](H2salabza: N,N′-Bis(salicylidene)-2-aminobenzylamine) and [Gd(hfac)3]. Chem Lett, 1998, 911

  39. Ryazanov M, Nikiforov V, Lloret F, Julve M, Kuzmina N, Gleizes A, Magnetically isolated CuIIGdIII pairs in the series [Cu(acacen)Gd(pta)3], [Cu(acacen)Gd(hfa)3], [Cu(salen)Gd(pta)3], and [Cu(salen)Gd(hfa)3], [acacen = N,N′-Ethylenebis(acetylacetoniminate(-)), salen = N,N′-ethylenebis(salicylideniminate(-)), hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(-), pta = 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate(-)]. Inorg Chem, 2002, 41: 1816–1823

    Article  CAS  Google Scholar 

  40. Margeat O, Lacroix P G, Costes J P, Donnadieu B, Lepetit C, Nakatani K. Synthesis, structures, and physical properties of copper(II)-Gadolinium(III) complexes combining ferromagnetic coupling and quadratic nonlinear optical properties. Inorg Chem, 2004, 43: 4743–4750

    Article  CAS  Google Scholar 

  41. Brewer C, Brewer G, Scheidt W R, Shang M, Carpenter E E, Synthesis and structural and magnetic characterization of discrete phenolato and imidazolate bridged Gd(III)-M(II) [M=Cu, Ni] dinuclear complexes. Inorg Chim Acta, 2001, 313: 65–70

    Article  CAS  Google Scholar 

  42. He F, Tong M, Chen X, Synthesis, structures, and magnetic properties of heteronuclear Cu(II)-Ln(III) (Ln = La, Gd, or Tb) complexes. Inorg Chem, 2005, 44: 8285–8292

    Article  CAS  Google Scholar 

  43. Atria A M, Moreno Y, Spodine E, Garland M T, Baggio R, A discrete dinuclear Cu(II) II -Gd(III) complex d III erived from a schiff base ligand, [CuGd(ems)(NO3)3H2O]Cu(ems) (ems: N,N′-ethylene-bis-5-methoxy salicylaldiimine). Inorg Chim Acta, 2002, 335: 1–6

    Article  CAS  Google Scholar 

  44. Kahn M L, Rajendiran T M, Jeannin Y, Mathoniere C, Kahn O. Ln(III)Cu(II) Schiff base compounds (Ln = Ce, Gd, Tb, Dy, Ho, Er): structural and magnetic properties. C R Acad Sci Ser IIc Chim, 2000, 3: 131–137

    CAS  Google Scholar 

  45. Costes J P, Dahan F, Dupuis A, Laurent J P. A general route to strictly dinuclear Cu(II)/Ln(III) complexes. structural determination and magnetic behavior of two Cu(II)/Gd(III) complexes. Inorg Chem, 1997, 36: 3429–3433

    CAS  Google Scholar 

  46. Costes J P, Dahan F, Novitchi G, Arion V, Shova S, Jpkowski L. Macrocyclic and open-chain CuII-4f (4f = GdIII, CeIII) complexes with planar diamino chains: structures and magnetic properties. Eur J Inorg Chem, 2004, 1530–1537

  47. Novitchi G, Costes J P, Donnadieu B. Synthesis and structure of 1-D heterometallic thiocyanato-bridged CuIIGdIII polymers with ferromagnetic properties. Eur J Inorg Chem, 2004, 1808–1812

  48. Kara H, Elerman Y, Prout K. Synthesis, crystal structure and magnetic properties of a novel GdIII-CuII heterodinuclear complex. Z Naturforsch Teil B: Chem Sci, 2000, 55: 1131–1136

    CAS  Google Scholar 

  49. Costes J P, Dahan F, Dupuis A, Laurent J P. A genuine example of a discrete bimetallic (Cu, Gd) complex: structural determination and magnetic properties. Inorg Chem, 1996, 35: 2400–2402

    Article  CAS  Google Scholar 

  50. Zeyrek C T, Elmali A, Elerman Y, Magnetic characterization, synthesis and crystal structure of a heterodinuclear CuIIGdIII Schiff base complex bridged by the two phenolic oxygen atoms. J Mol Struct, 2005, 740: 47–52

    Article  CAS  Google Scholar 

  51. Elmali A, Elerman Y. Magnetic properties and crystal structure of a CuIIGdIII heterodinuclear schiff base complex. Z Naturforsch Teil B Chem Sci, 2004, 59; 535–540

    CAS  Google Scholar 

  52. Akine S, Matsumoto T, Taniguchi T, Nabeshima T. Synthesis, structures, and magnetic properties of tri- and dinuclear Cop-per(II)-Gadolinium(III) complexes of linear oligooxime ligands. Inorg Chem, 2005, 44: 3270–3274

    Article  CAS  Google Scholar 

  53. Mohanta S, Lin H, Lee C, Wei H. A two-dimensional CuIIGdIII compound self-assembled by H-bonding and intermolecular weak coordinate bonding between the dinuclear cores: structure and magnetic properties. Inorg Chem Commun, 2002, 5: 585–588

    Article  CAS  Google Scholar 

  54. Costes J P, Novitchi G, Shova S, Dahan F, Donnadieu B, Tuchagues J P. Synthesis, structure, and magnetic properties of heterometallic dicyanamide-bridged Cu-Na and Cu-Gd one-dimensional polymers. Inorg Chem, 2004, 43: 7792–7799

    Article  CAS  Google Scholar 

  55. Costes J P, Dahan F, Dupuis A. Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3·nH2O complexes (LH2 standing for tetradentate schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). Inorg Chem, 2000, 39: 165–168

    Article  CAS  Google Scholar 

  56. Benelli C, Caneschi A, Gatteschi D, Guillou O, Pardi L. Synthesis, crystal structure, and magnetic properties of tetranuclear complexes containing exchange-coupled dilanthanide-dicopper (lanthanide = Gadolinium, dysosium) species. Inorg Chem, 1990, 29: 1750–1755

    Article  CAS  Google Scholar 

  57. Benelli C, Caneschi A, Fabretti A C, Gatteschi D, Pardi L. Ferronetic coupling of Gadolinium(III) ions and nitronyl nitroxide radicals in an essentially isotropic way. Inorg Chem, 1990, 29: 4153–4155

    Article  CAS  Google Scholar 

  58. Andruh M, Ramade I, Codjovi E, Guillou O, Kahn O, Trombe J C. Crystal structure and magnetic properties of [Ln2Cu4] hexanuclear clusters (where Ln = trivalent lanthanide). Mechanism of the Gadonium(III)-copper(II) magnetic interaction. J Am Chem Soc, 1993, 115: 1822–1829

    Article  CAS  Google Scholar 

  59. Yan F, Chen Z D, Magnetic coupling constants and spin density maps for heterobinuclear complexes GdCu(OTf)3(bdmap)2(H2O)·THF, [Gd-(C4H7ON)4(H2O)3][Fe(CN)6]·2H2O, and [Gd(C4H7ON)4(H2O)3]-[Cr-(CN)6] ·2H2O: a density functional study. J Phys Chem A, 2000, 104: 6295–6300

    Article  CAS  Google Scholar 

  60. Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K. Mechanism of ferromagnetic coupling in copper(II)-Gadolinium(III) complexes. J Am Chem Soc, 2004, 126: 3321–3331

    Article  CAS  Google Scholar 

  61. Benelli C, Murrie M, Parsons S. Synthesis, structural and magnetic characterisation of a new Mn-Gd pivalate: preparation from a preformed hexanuclear cluster, J Chem Soc Dalton Trans, 1999, 4125–4126

  62. Costes J P, Clemente-Juan J M, Dahan F. Dinuclear (FeII, GdIII) complexes deriving from hexadentate schiff bases: synthesis, structure, and mussbauer and magnetic properties. Inorg Chem, 2002, 41: 2886–2891

    Article  CAS  Google Scholar 

  63. Costes J P, Dahan F, Dupuis A, Laurent J P. An original family of heterodinuclear Co(II)-Ln(III) complexes: synthesis and magneto-structural study. C R Acad Sci Paris t.1 S’erie IIc, 1998, 1: 417–420

    CAS  Google Scholar 

  64. Costes J P, Dahan F, Dupuis A. Experimental evidence of a ferromagnetic ground state (S = 9/2) for a dinuclear Gd(III)-Ni(II) complex. Inorg Chem, 1997, 36: 4284–4286

    Article  CAS  Google Scholar 

  65. Chen Q, Luo Q, Zheng L. A study on the novel d-f heterodinuclear Gd(III)-Ni(II) cryptate: synthesis, crystal structure, and magnetic behavior. Inorg Chem, 2002, 41: 605–609

    Article  CAS  Google Scholar 

  66. Bayly S R, Xu Z, Patrick B O. d/f complexes with uniform coordination geometry: structural and magnetic properties of an LnNi2 core supported by a heptadentate amine phenol ligand. Inorg Chem, 2003, 42: 1576–1583

    Article  CAS  Google Scholar 

  67. Costes J P, Dupuis A, Laurent J P. An original heterodinuclear VO2+,Gd3+ complex with a nonet ground state. J Chem Soc Dalton Trans, 1998, 735–736

  68. Costes J P, Dahan F, Donnadieu B. Versatility of the nature of the magnetic gadolinium(III)-vanadium(IV) interaction-structure and magnetic properties of two heterobinuclear [Gd, V(O)] complexes. Eur J Inorg Chem, 2001, 363–365

  69. Kou H Z, Gao S, Li C. Characterization of a soluble molecular magnet: unusual magnetic behavior of cyano-bridged Gd(III)-Cr(III) complexes with one-dimensional and nanoscaled square structures. Inorg Chem, 2002, 41: 4756–4762

    Article  CAS  Google Scholar 

  70. Kou H Z, Gao S, Sun B. Metamagnetism of the first cyano-bridged two-dimensional brick-wall-like 4f-3d array. Chem Mater, 2001, 13: 1431–1433

    Article  CAS  Google Scholar 

  71. Yan B, Wang H, Chen Z D. A novel cyano-bridged one-dimensional chain complex: [Gd(bet)2(H2O)3Fe(CN)6]n (bet = betaine). Inorg Chem Commun, 2000, 3: 653–657

    Article  CAS  Google Scholar 

  72. Liu Q, Gao S, Li J, Zhou Q, Yu K, Ma B Q, Zhang S, Zhang X, Jin T Z. Structures and magnetism of two novel heptanuclear lanthanide-centered trigonal prismatic clusters: [LnCu63-OH)3(HL)2(L)4] (ClO4)2sd25H2O (Ln = La, Tb; H2L = Iminodiacetic Acid). Inorg Chem, 2000, 39: 2488–2492

    Article  CAS  Google Scholar 

  73. Kahn M L, Sutter J P, Golhen S. Systematic investigation of the nature of the coupling between a Ln(III) Ion (Ln = Ce(III) to Dy(III)) and its aminoxyl radical ligands. Structural and magnetic characteristics of a series of {Ln(organic radical)2} compounds and the related {Ln-(Nitrone)2} derivatives. J Am Chem Soc, 2000, 122: 3413–3421

    Article  CAS  Google Scholar 

  74. Sutter J P, Kahn M L, Kahn O. Conclusive demonstration of the ferromagnetic nature of the interaction between Holmium(III) and Aminoxyl radicals. Adv Mater, 1999, 11: 863–865

    Article  CAS  Google Scholar 

  75. Andruh M, Costes J P, Diaz C, Gao S. 3d–4f combined chemistry: synthetic strategies and magnetic properties. Inorg Chem, 2009, 48: 3342–3359

    Article  CAS  Google Scholar 

  76. Tanase S, Reedijk J. Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev, 2006, 250: 2501–2510

    Article  CAS  Google Scholar 

  77. Shiga T, Okawa H, Kitagawa S, Ohba M. Stepwise synthesis and magnetic control of trimetallic magnets [Co2Ln(L)2(H2O)4][Cr(CN)6nH2O (Ln = La, Gd; H2L = 2,6-Di(acetoacetyl)pyridine) with 3-D pillared-layer structur. J Am Chem Soc, 2006, 128: 16426–16427

    Article  CAS  Google Scholar 

  78. Kou H Z, Zhou B, Gao S, Wang R. A 2D cyano- and oxamidato-bridged heterotrimetallic CrIII-CuII-GdIII complex. Angew Chem Int Ed, 2003, 42: 3288–3291

    Article  CAS  Google Scholar 

  79. Kou H Z, Zhou B, Wang R. Heterotrimetallic 4f–3d coordination polymers: synthesis, crystal structure, and magnetic properties. Inorg Chem, 2003, 42: 7658–7665

    Article  CAS  Google Scholar 

  80. Yan B, Chen Z D. The magnetochemistry of novel cyano-bridged complexes Ln(DMF)4(H2O)2Mn (CN)6·H2O (Ln = Tb, Dy, Er). Transition Metal Chemistry, 2001, 26: 287–289

    Article  CAS  Google Scholar 

  81. Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J. A tetranuclear 3d–4f single molecule magnet: [CuIILTbIII(hfac)2]2. J Am Chem Soc, 2004, 126: 420–421

    Article  CAS  Google Scholar 

  82. Mori F, Nyui T, Ishida T, Nogami T, Choi K Y, Nojiri H. Oximate-bridged trinuclear Dy-Cu-Dy complex behaving as a single-molecule magnet and its mechanistic investigation. J Am Chem Soc, 2006, 128: 1440–1441

    Article  CAS  Google Scholar 

  83. Chen Z D, Zhao B, Cheng P, Zhao Z, Shi W, Song Y. A purely lanthanide-based complex exhibiting ferromagnetic coupling and slow magnetic relaxation behavior. Inorg Chem, 2009, 48: 3493–3495

    Article  CAS  Google Scholar 

  84. Ishikawa N, Sugita M, Ishikaw T, Koshihara S, Kaizu Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B, 2004, 108: 11265–11271

    Article  CAS  Google Scholar 

  85. Price D J, Batten S R, Moubaraki B, Murray K S. Synthesis, structure and magnetism of a new manganese carboxylate cluster: [Mn16O16-(OMe)6(OAc)16(MeOH)3(H2O)3]·6H2O. Chem Commun, 2002, 762-763

  86. Mereacre V M, Ako A M, Clérac R, Wernsdorfer W, Filoti G, Bartolomé J, Anson C E, Powell A K. A bell-shaped Mn11Gd2 single-molecule magnet. J Am Chem Soc, 2007, 129: 9248–9249

    Article  CAS  Google Scholar 

  87. Coulon C, Clérac R, Lecren L, Wernsdorfer W, Miyasaka H. Glauber dynamics in a single-chain magnet: From theory to real systems. Phys Rev B, 2004, 69: 132408

    Article  Google Scholar 

  88. Lecren L, Wernsdorfer W, Li Y, Roubeau O, Miyasaka H, Clérac R. Quantum tunneling and quantum phase interference in a [MnII 2MnIII 2] single-molecule magnet. J Am Chem Soc, 2005, 127: 11311–11317

    Article  CAS  Google Scholar 

  89. Chandrasekhar V, Pandian B M, Azhakar R, Vittal J J, Clérac R. Linear trinuclear mixed-metal CoII-GdIII-CoII single-molecule magnet: [L2Co2Gd][NO3]·2CHCl3 (LH3 = (S)P[N(Me)NCH-C6H3-2-OH-3-OMe]3). Inorg Chem, 2007, 46: 5140–5142

    Article  CAS  Google Scholar 

  90. Glauber R J. Photon correlations. Phys Rev Lett, 1963, 10: 84–86

    Article  Google Scholar 

  91. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini M G, Novak M A. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew Chem Int Ed, 2001, 40: 1760–1763

    Article  CAS  Google Scholar 

  92. Bogani L, Vindigni A, Sessoli R, Gatteschi D. Single chain magnets: where to from here? J Mater Chem, 2008, 18: 4750–4758

    Article  CAS  Google Scholar 

  93. Coulon C, Miyasaka H, Clérac R. Single-chain magnets: theoretical approach and experimental systems. Struct Bond, 2006, 122: 163–206

    Article  CAS  Google Scholar 

  94. Costes J P, Clemente-Juan J M, Dahan F, Milon F. Unprecedented (Cu2Ln)n complexes (Ln = Gd3+, Tb3+): a new “single chain magnet”. Inorg Chem, 2004, 43: 8200–8202

    Article  CAS  Google Scholar 

  95. Benelli C, Caneschi A, Gatteschi D. Magnetic properties of lanthanide complexes with nitronyl nitroxides. Inorg Chem, 1989, 28: 272–275

    Article  Google Scholar 

  96. Benelli C, Caneschi A, Gatteschi D. Gadolinium(III) complexes with pyridine-substituted nitronyl nitroxide radicals. Inorg Chem, 1992, 31: 741–746

    Article  CAS  Google Scholar 

  97. Lescop C, Belorizky E, Luneau D. Synthesis, structures, and magnetic properties of a series of lanthanum(III) and gadolinium(III) complexes with chelating benzimidazole-substituted nitronyl nitroxide free radicals. evidence for antiferromagnetic GdIII-radical interactions. Inorg Chem, 2002, 41: 3375–3384

    CAS  Google Scholar 

  98. Lescop C, Luneau D, Belorizky E. Unprecedented antiferromagnetic metal? ligand interactions in gadolinium?nitroxide derivatives. Inorg Chem, 1999, 38: 5472–5473

    Article  CAS  Google Scholar 

  99. Tsukuda T, Suzuky T, Kaizaki S. Synthesis, spectroscopic and mag netic properties of lanthanide(III) complexes with a chelated imino nitroxide radical. J Chem Soc Dalton Trans, 2002, 1721–1726

  100. Caneschi A, Dei A, Gatteschi D. Antiferromagnetic coupling in a gadolinium(III) semiquinonato complex. Angew Chem Int Ed, 2000, 39: 246–248

    Article  CAS  Google Scholar 

  101. Dei A, Gatteschi D, Massa C A. Spontaneous symmetry breaking in the formation of a dinuclear gadolinium semiquinonato complex: synthesis, high-field epr studies, and magnetic properties. Chem Eur J, 2000, 6: 4580–4586

    Article  CAS  Google Scholar 

  102. Sutter J P, Kahn M L, Golhen S. Synthesis and magnetic behavior of rare-earth complexes with N,O-chelating nitronyl nitroxide triazole ligands: example of a [GdIII{Organic Radical}2] compound with an S = 9/2 ground state. Chem Eur J, 1998, 4: 571–576

    Article  CAS  Google Scholar 

  103. Raebiger J W, Miller J S. Magnetic ordering in the rare earth molecule-based magnets, Ln(TCNE)3 (Ln = Gd, Dy; TCNE = tetracyanoethylene). Inorg Chem, 2002, 41: 3308–3312

    Article  CAS  Google Scholar 

  104. Zhao H, Bazile M J, Galan-Mascaros J R. A rare-earth metal TCNQ magnet: synthesis, structure, and magnetic properties of {[Gd2(TCNQ)5-(H2O)9][Gd(TCNQ)4(H2O)3]}4H2O. Angew Chem Int Ed, 2003, 42: 1015–1018

    Article  CAS  Google Scholar 

  105. Benelli C, Caneschi A, Gatteschi D, Sessoli R. Magnetic ordering in a molecular material containing dysprosium(III) and a nitronyl nitroxide. Adv Mater, 1992, 4: 504–505

    Article  CAS  Google Scholar 

  106. Benelli C, Caneschi A, Gatteschi D, Sessoli R. Magnetic properties and phase transitions in molecular based materials containing rare earth ions and organic radicals (invited). J Appl Phys, 1993, 73: 5333–5337

    Article  CAS  Google Scholar 

  107. Bogani L, Sangregorio C, Sessoli R, Gatteschi D. Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosiumnitronyl nitroxide compound. Angew Chem Int Ed, 2005, 44: 5817–5821

    Article  CAS  Google Scholar 

  108. Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove B K, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang Y Z, Komeda T, Yamagishi M, Takeya J. Direct observation of lanthanide(III)-phthalocyanine molecules on Au(III) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc, 2009, 131: 9967–9976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BingWu Wang or Song Gao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20821091, 20503001), and the National Basic Research Program of China (Grant Nos. 2006CB601102, 2009CB929403)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Jiang, S., Wang, X. et al. Magnetic molecular materials with paramagnetic lanthanide ions. Sci. China Ser. B-Chem. 52, 1739–1758 (2009). https://doi.org/10.1007/s11426-009-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0275-9

Keywords

Navigation