Skip to main content
Log in

A multi-dimensional microcanonical Monte Carlo study of S0 → T1 intersystem crossing of isocyanic acid

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstact

A general formula for the multi-dimensional Monte Carlo microcanonical nonadiabatic rate constant expressed in configuration space is applied to calculate the rate of intersystem crossing (ISC) between the ground (S0) and first excited triplet (T1) states for isocyanic acid. One-, two- and three-dimensional potential energy surfaces are constructed by coupled-cluster single-double CCSD calculations, which are used for Monte Carlo sampling. The calculated S0→T1 ISC rate is in good agreement with experimental findings, which gives us a reason to believe that the multi-dimensional Monte Carlo microcanonical nonadiabatic rate theory is a very effective method for calculating nonadiabatic transition rate of a polyatomic molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorquet J C, Leyh-Nihant B. Nonadiabatic unimolecular reactions. 1. A statistical formulation for the rate constants. J Phys Chem, 1988, 92: 4778–4783

    Article  CAS  Google Scholar 

  2. Remacle F, Deharent D, Lorquet J C. Nonadiabatic unimolecular reactions. 2. Isotope effects on the kinetic energy release. J Phys Chem, 1988, 92: 4784–4787

    Article  CAS  Google Scholar 

  3. Jasper A W, Zhu C Y, Nangia S, Truhlar D G. Introductory lecture: Nonadiabatic effects in chemical dynamics. Faraday Discuss, 2004, 127: 1–22

    Article  CAS  Google Scholar 

  4. Cui Q, Morokuma. K, Bowman. J M, Klippenstein S J. The spin-forbidden reaction CH 2Π) +N 2HCN + N(4 S) revisited. II. Nonadiabatic transition state theory and application. J Chem Phys, 1999, 110: 9469–9482

    Article  CAS  Google Scholar 

  5. Harvey J M, Aschi M. Spin-forbidden dehydrogenation of methoxy cation: a statistical view. Phys Chem Chem Phys, 1999, 1: 5555–5563

    Article  CAS  Google Scholar 

  6. Harvey J N, Aschi M. Modelling spin-forbidden reactions: recombination of carbon monoxide with iron tetracarbonyl. Faraday Discuss, 2003, 124: 129–143

    Article  CAS  Google Scholar 

  7. Rice O K, Ramsperger H C. Theories of unimolecular gas reactions at low pressures. J Am Chem Soc, 1927, 49: 1617–1629.

    Article  CAS  Google Scholar 

  8. Kassel L S. Studies in homogeneous gas reactions. II. Introduction of quantum theory. J Phys Chem, 1928, 32: 1065–1079

    Article  CAS  Google Scholar 

  9. Marcus R, Rice O K. The kinetics of the recombination of methyl radicals and iodine atoms. J Phys Colloid Chem, 1951, 55: 894–908

    Article  CAS  Google Scholar 

  10. Truhlar D G. Chemical reaction theory: summarizing remarks. Faraday Discuss, 1998, 110: 521–535

    Article  CAS  Google Scholar 

  11. Marks A J, Thompson D L. A phase-space theory and Monte Carlo sampling method for studying nonadiabatic unimolecular reactions. J Chem Phys, 1992, 96: 1911–1918

    Article  CAS  Google Scholar 

  12. Marks A J. Nonadiabatic transition-state theory: A Monte Carlo study of competing bond fission process in bromoacetyl chloride. J Chem Phys, 2001, 114: 1700–1708

    Article  CAS  Google Scholar 

  13. Schranz H W, Nordholm S, Nyman G. An efficient microcanonical sampling procedure for molecular systems. J Chem Phys, 1991, 94: 1487–1498

    Article  CAS  Google Scholar 

  14. Zhao Y, Mil’nikov G, Nakamura H. Evaluation of canonical and microcanonical nonadiabatic reaction rate constants by using the Zhu-Nakamura formulas. J Chem Phys, 2004, 121: 8854–8860

    Article  CAS  Google Scholar 

  15. Conroy D, Artisov V, Feng L, Sanov A, Reiler H. Competitive pathways via nonadiabatic transitions in photodissociation. Acc Chem Res, 2001, 34: 625–632

    Article  CAS  Google Scholar 

  16. Kaledin A L, Cui Q, Heaven M C, Morokuma K. Ab initio theoretical studies on photodissociation of HNCO upon excitation: The S 1(1 A″)←S 0(1 A′) role of internal conversion and intersystem crossing. J Chem Phys, 1999, 111: 5004–5016

    Article  CAS  Google Scholar 

  17. Zyianov M, Droz-Georget Th, Reisler H. Fragment recoil anisotropies in the photoinitiated decomposition of HNCO. J Chem Phys, 1999, 110: 2059–2068

    Article  Google Scholar 

  18. Zyrianov M, Sannov A, Droz-Georget Th, Reisler H. Photoinitiated decomposition of HNCO near the H+NCO threshold: Centrifugal barriers and channel competition. J Chem Phys, 1999, 110: 10774–10783

    Article  CAS  Google Scholar 

  19. Fang W H, You X Z, Yin Z. Theoretical studies on photolysis and pyrolysis of isocyanic acid. Chem Phys Lett, 1995, 238: 236–242

    Article  Google Scholar 

  20. Mebel A M, Luna A, Lin M C, Morokuma K. A density functional study of the global potential energy surfaces of the [H,x C, N, O] system in singlet and triplet states. J Chem Phys, 1996, 105: 6439–6454

    Article  CAS  Google Scholar 

  21. Miller W H. Tunneling corrections to unimolecular rate constants, with application to formaldehyde. J Am Chem Soc, 1979, 101: 6810–6814

    Article  CAS  Google Scholar 

  22. Miller W H, Schwartz S D, Tromp J W. Quantum mechanical rate constants for bimolecular reactions, J Chem Phys, 1983, 79: 4889–4898

    Article  CAS  Google Scholar 

  23. Zhang F, Ding W J, Fang W H. Combined nonadiabatic transition state theory and ab initio molecular dynamics study on selectivity of the α and β bond fissions in photodissociation of bromoacetyl chloride. J Chem Phys, 2006, 125: 184305

    Article  Google Scholar 

  24. Landau L D. On the theory of transfer of energy at collisions. II. Phys Z Sowjetunion, 1932, 2: 46–51

    CAS  Google Scholar 

  25. Zener C. Non-adiabatic crossing of energy levels. Proc R Soc London Ser A, 1932, 137: 696–702

    Article  Google Scholar 

  26. Delos J B, Thorson W R. Studies of the potential-curve-crossing problem. II. General theory and a model for close crossing. Phys Rev A, 1972, 6: 728–745

    Article  Google Scholar 

  27. Nakamura H. Nonadiabatic Transitions: Concepts, Basic Theories and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd., 2002

    Google Scholar 

  28. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M, Cheeseman A J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Promelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B G, Chen W, Wong M W, Andres J L, Head-Gordon M, Replogle E S, Pople J A. Gaussian 03, Revision D.01. Wallingford CT: Gaussian, Inc., 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiHai Fang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20720102038)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Fang, W., Luo, Y. et al. A multi-dimensional microcanonical Monte Carlo study of S0 → T1 intersystem crossing of isocyanic acid. Sci. China Ser. B-Chem. 52, 1885–1891 (2009). https://doi.org/10.1007/s11426-009-0259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0259-9

Keywords

Navigation