Skip to main content
Log in

Theoretical prediction of the noble gas complexes HeAuF and NeAuF

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations were carried out to investigate the structures and the stability of the noble gas complexes HeAuF and NeAuF through MP2 and CCSD(T) methods. The HeAuF was predicted to have a linear structure with weak He—Au covalent bonding, the distance of which is closer to the covalent limit in comparison with the corresponding van der Waals limit. The dissociation energy with respect to He + AuF was found to be 24 and 26 kJ·mol−1 at the CCSD(T)/basis set B and B′ levels, respectively. However, similar calculations for NeAuF indicate that NeAuF is not a stable species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett N. Synthesis of chemical compound XePtF6. Proc Chem Soc, 1962, 112: 218–218

    Google Scholar 

  2. Evans C J, Gerry M C L. The microwave spectra and structures of Ar-AgX(X=F,Cl,Br). J Chem Phys, 2000, 112: 9363–9374

    Article  CAS  Google Scholar 

  3. Michaud J M, Cooke S A, Gerry M C L. Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl. Inorg Chem, 2004, 43: 3871–3881

    Article  CAS  Google Scholar 

  4. Evans C J, Lesarri A, Gerry M C L. Manipulation and characterization of xenon-metalloporphyrin complexation with a scanning tunneling microscope. J Am Chem Soc, 2000, 122: 6100–6105

    Article  CAS  Google Scholar 

  5. Evans C J, Rubinoff D S, Gerry M C L. Noble gas-metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar-AuF and Ar-AuBr. Phys Chem Chem Phys, 2000, 2: 3943–3948

    Article  CAS  Google Scholar 

  6. Cooke S A, Gerry M C L. XeAuF. J Am Chem Soc, 2004, 126: 17000–17008

    Article  CAS  Google Scholar 

  7. Evans C J, Gerry M C L. Noble gas-metal chemical bonding? The microwave spectra, structures and hyperfine constants of Ar-CuX(X=F, Cl, Br). J Chem Phys, 2000, 112: 1321–1329

    Article  CAS  Google Scholar 

  8. Tapan K G. Properties, dynamics, and electronic structure of atoms and molecules bonding analysis for NgAuOH (Ng = Kr, Xe). J Chem Phys, 2006, 124: 124304-1–124304-7

    Google Scholar 

  9. Cooke S A, Gerry M C L. Insights into the xenon-silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl. Phys Chem Chem Phys, 2004, 6: 3248–3256

    Article  CAS  Google Scholar 

  10. Reynard L M, Evens C J, Gerry M C L. Microwave Spectrum, Structure and Hyperfine Constants of Kr-AgCl. J Mol Spectrosc, 2001, 206: 33–40

    Article  CAS  Google Scholar 

  11. Walker N R, Reynard L M, Gerry M C L. The microwave spectrum and structure of KrAgF. J Mol Struct, 2002, 612: 109–116

    Article  CAS  Google Scholar 

  12. Thomas J M, Walker N R, Cooke S A, Gerry M C L. Microporous metal organic materials: Promising candidates as sorbents for hydrogen storage. J Am Chem Soc, 2004, 126: 1235–1246

    Article  CAS  Google Scholar 

  13. Michaud J M, Gerry M C L. XeCu Covalent Bonding in XeCuF and XeCuCl, Characterized by Fourier Transform Microwave Spectroscopy Supported by Quantum Chemical Calculations. J Am Chem Soc, 2006, 128: 7613–7621

    Article  CAS  Google Scholar 

  14. Mizoguchi A, Endo Y, Ohshima Y J. Rotational spectrum of a salt-containing van der Waals complex: Ar-NaCl. J Chem Phys, 1998, 109: 10539–10542

    Article  CAS  Google Scholar 

  15. Pseudopotentials of Stuttgart /koeln group (http://www.theochem.unistuttgart.de/pseudopotentials), 2003

  16. Boys S F, Bernardi F. Calculation of small molecular interactions by differences of separate total energies. Mol Phys, 1970, 19: 553–556

    Article  CAS  Google Scholar 

  17. Glendening E D, Reed A, Carpenter J E, Weinhold F. NBO Version 3.1. Madison: University of Wisconsin

  18. Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  19. Frisch M J, Trucks G W, Schlegel H B, Scuseria G. E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda, Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G. A, Salvador P, Dannenberg J J, Zakrzewski V G., Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Li-ashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill, P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision B.05. Pittsburgh PA: Gaussian, Inc, 2003

    Google Scholar 

  20. Evans C J, Gerry M C L. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar-AuCl and Kr-AuCl. J Am Chem Soc, 2000, 122: 1560–1561

    Article  CAS  Google Scholar 

  21. Bartlett N, Sladky F O. In: Bailar J C, Nyholm H J, trotman-Dickenson R, eds. Comprehensive Ingornic Chemistry, Programon: Oxford, 1973. 213

  22. Pyykkö P. Relativistic effects in structural chemistry. Chem Rev, 1988, 88: 579–593

    Article  Google Scholar 

  23. Pyykkö P. Strong closed-shell interactions in inorganic chemistry. Chem Rev, 1997, 97: 597–636

    Article  Google Scholar 

  24. Peterson K A, Puzzarini C. Importance of the quality of metal and ligand basis sets in transition metal species. Theor Chem Acc, 2005, 114: 283–296

    Article  CAS  Google Scholar 

  25. Figgen D, Rauhut G, Dolg M, Stoll H. Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac-Hartree-Fock data. Chem Phys, 2005, 311: 227–244

    Article  CAS  Google Scholar 

  26. Wong M W. Prediction of a metastable helium compound: HHeF. J Am Chem Soc, 2000, 122: 6289–6290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20403011)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Zhu, H., Xie, D. et al. Theoretical prediction of the noble gas complexes HeAuF and NeAuF. Sci. China Ser. B-Chem. 52, 1987–1990 (2009). https://doi.org/10.1007/s11426-009-0255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0255-0

Keywords

Navigation