Skip to main content
Log in

Revisiting the trapping of noble gases (He–Kr) by the triatomic H3+ and Li3+ species: a density functional reactivity theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Small atomic clusters with exotic stability, bonding, aromaticity, and reactivity properties can be made use of for various purposes. In this work, we revisit the trapping of noble gas atoms (He–Kr) by the triatomic H3+ and Li3+ species by using some analytical tools from density functional theory, conceptual density functional theory, and the information-theoretic approach. Our results showcase that though similar in geometry, H3+ and Li3+ exhibit markedly different behavior in bonding, aromaticity, and reactivity properties after the addition of noble gas atoms. Moreover, the exchange–correlation interaction and steric effect are key energy components in stabilizing the clusters. This study also finds that the origin of the molecular stability of these species is due to the spatial delocalization of the electron density distribution. Our work provides an additional arsenal towards a better understanding of small atomic clusters capturing noble gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data in this work are in the text.

Code Availability

No new code is generated from this work.

References

  1. Fan Y, Liu S, Yi Y, Rong H, Zhang J (2021) Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano 15:2005–2037

    Article  CAS  PubMed  Google Scholar 

  2. Philip R, Chantharasupawong P, Qian H, Jin RC, Thomas J (2012) Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett 12:4661–4667

    Article  CAS  PubMed  Google Scholar 

  3. Jena P, Sun Q (2018) Super atomic clusters: design rules and potential for building blocks of materials. Chem Rev 118:5755–5870

    Article  CAS  PubMed  Google Scholar 

  4. Bartlett N (1962) Xenon hexafluoroplatinate(V) Xe+[PtF6]-. Proc Chem Soc 115:218

    Google Scholar 

  5. Miller S, Tennyson J, Geballe TR, Stallard T (2020) Thirty years of H3+ astronomy. Rev Mod Phys 92:035003

    Article  CAS  Google Scholar 

  6. Borocci S, Giordani M, Grandinetti F (2011) Cationic noble gas hydrides-2: a theoretical investigation on HNgHNgH+ (Ng = Ar, Kr, Xe). Comput Theor Chem 964:318–323

    Article  CAS  Google Scholar 

  7. McDonald DC II, Rittgers BM, Theis RA, Fortenberry RC, Marks JH, Leicht D, Duncan MA (2020) Infrared spectroscopy and anharmonic theory of H3+Ar2,3 complexes: the role of symmetry in solvation. J Chem Phys 153:134305

    Article  CAS  PubMed  Google Scholar 

  8. Pauzat F, Ellinger Y, Pilmé J, Mousis O (2009) H3+ as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in XnH3+ (n=1–3). J Chem Phys 130:174313

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty A, Giri S, Chattaraj PK (2010) Trapping of noble gases (He–Kr) by the aromatic H3+ and Li3+ species: a conceptual DFT approach. New J Chem 34:1936–1945

    Article  CAS  Google Scholar 

  10. Parr RG, Yang WT (1989) Density functional theory for atoms and molecules. Oxford University Press, New York

    Google Scholar 

  11. Liu SB (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126:244103

    Article  PubMed  CAS  Google Scholar 

  12. Liu SB, Govind N (2008) Toward understanding the nature of internal rotation barriers with a new energy partition scheme: ethane and n-butane. J Phys Chem A 112:6690–6699

    Article  CAS  PubMed  Google Scholar 

  13. Liu SB, Govind N, Pedersen LG (2008) Exploring the origin of the internal rotational barrier for molecules with one rotatable dihedral angle. J Chem Phys 129:094104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu SB, Hu H, Pedersen LG (2010) Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J Phys Chem A 114:5913–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ess DH, Liu SB, De Proft F (2010) Density functional steric analysis of linear and branched alkanes. J Phys Chem A 114:12952–12957

    Article  CAS  PubMed  Google Scholar 

  16. Liu SB (2013) Origin and nature of bond rotation barriers: a unified view. J Phys Chem A 117:962–965

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Zhong AG, Yang QS, Liu SB (2011) Origin of anomeric effect: a density functional steric analysis. J Chem Phys 134:084103

    Article  PubMed  CAS  Google Scholar 

  18. Zhou XY, Yu DH, Rong CY, Lu T, Liu SB (2017) Anomeric effect revisited: perspective from information-theoretic approach in density functional reactivity theory. Chem Phys Lett 694:97–102

    Article  CAS  Google Scholar 

  19. Cao XF, Liu SQ, Rong CY, Lu T, Liu SB (2017) Is there a generalized anomeric effect? Analyses from energy components and information-theoretic quantities from density functional reactivity theory. Chem Phys Lett 687:131–137

    Article  CAS  Google Scholar 

  20. Zhao DB, Rong CY, Jenkins S, Kirk SR, Yin DL, Liu SB (2013) Origin of the cis-effect: a density functional theory study of doubly substituted ethylenes. Acta Phys-Chim Sin 29:43–54

    Article  CAS  Google Scholar 

  21. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  22. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  PubMed  Google Scholar 

  23. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys-Chim Sin 25:590–600

    Article  CAS  Google Scholar 

  24. Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  25. Ayers PW, Levy M (2000) Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity.” Theor Chem Acc 103:353–360

    Article  CAS  Google Scholar 

  26. Guo CN, He X, Rong CY, Lu T, Liu SB, Chattaraj PK (2021) Local temperature as a chemical reactivity descriptor. J Phys Chem Lett 12:5623–5630

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Aldea D, Alvarellos JE (2007) Kinetic energy density study of some representative semilocal kinetic energy functionals. J Chem Phys 127:144109

    Article  PubMed  CAS  Google Scholar 

  28. Thakkar (1992) Comparison of kinetic-energy density functionals. Phys Rev A: At Mol Opt Phys 46:6920–6924

    Article  CAS  Google Scholar 

  29. Salazar EX, Guarderas PF, Ludena EV, Cornejo MH, Karasiev VV (2016) Study of some simple approximations to the non-interacting kinetic energy functional. Int J Quantum Chem 116:1313–1321

    Article  CAS  Google Scholar 

  30. Laricchia S, Fabiano E, Constantin LA, Della Sala F (2011) Generalized gradient approximations of the noninteracting kinetic energy from the semiclassical atom theory: rationalization of the accuracy of the frozen density embedding theory for nonbonded interactions. J Chem Theory Comput 7:2439–2451

    Article  CAS  PubMed  Google Scholar 

  31. Constantin LA, Fabiano E, Della Sala F (2017) Modified fourth-order kinetic energy gradient expansion with hartree potential-dependent coefficients. J Chem Theory Comput 13:4228–4239

    Article  CAS  PubMed  Google Scholar 

  32. Nafziger J, Jiang K, Wasserman A (2017) Accurate reference data for the nonadditive, noninteracting kinetic energy in covalent bonds. J Chem Theory Comput 13:577–586

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh SK, Berkowitz M, Parr RG (1984) Transcription of ground-state density-functional theory into a local thermodynamics. Proc Natl Acad Sci U S A 81:8028–8031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghosh SK, Parr RG (1986) Phase-space approach to the exchange-energy functional of density-functional theory. Phys Rev A 34:785–791

    Article  CAS  Google Scholar 

  35. Becke AD, Edgecombe K (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  36. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  37. Liu SB, Rong CY, Lu T, Hu H (2018) Identifying strong covalent interactions with Pauli energy. J Phys Chem A 122:3087–3095

    Article  CAS  PubMed  Google Scholar 

  38. Holas A, March NH (1991) Construction of the Pauli potential, Pauli energy, and effective potential from the electron density. Phys Rev A: At Mol Opt Phys 44:5521–5536

    Article  CAS  Google Scholar 

  39. Huang Y, Liu LH, Rong CY, Lu T, Ayers PW, Liu SB (2018) SCI: a robust and reliable density-based descriptor to determine multiple covalent bond orders. J Mol Model 24:213

    Article  PubMed  CAS  Google Scholar 

  40. Gaillard MJ, Gemmell DS, Goldring G, Levine I, Pietsch WJ, Poizat JC, Ratkowski AJ, Remillieux J, Vager Z, Zabransky BJ (1978) Experimental determination of the structure of H3+. Phys Rev A 17:1797–1803

    Article  CAS  Google Scholar 

  41. Alexandrova AN, Boldyrev AI (2003) σ-Aromaticity and σ-antiaromaticity in alkali metal and alkaline earth metal small clusters. J Phys Chem A 107:554–560

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16, revision A.03. Gaussian Inc, Wallingford

    Google Scholar 

  43. Becke AD (1993) Density-functional thermochemistry. III the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  44. Lee C, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  45. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  46. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  47. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  48. Juselius J, Sundholm D, Gauss J (2004) Calculation of current densities using gauge-including atomic orbitals. J Chem Phys 121:3952–3963

    Article  CAS  PubMed  Google Scholar 

  49. He X, Yu DH, Wu JY, Wang B, Rong CY, Chattaraj PK, Liu SB (2020) Towards understanding metal aromaticity in different spin states: a density functional theory and information-theoretic approach analysis. Chem Phys Lett 761:138065

    Article  CAS  Google Scholar 

  50. Yu DH, Rong CY, Lu T, Chattaraj PK, De Proft F, Liu SB (2017) Aromaticity and antiaromaticity of substituted fulvene derivatives: perspectives from the information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 19:18635–18645

    Article  CAS  PubMed  Google Scholar 

  51. Yu DH, Rong CY, Lu T, De Proft F, Liu SB (2018) Baird’s rule in substituted fulvene derivatives: an information-theoretic study on triplet-state aromaticity and antiaromaticity. ACS Omega 3:18370–18379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu DH, Rong CY, Lu T, De Proft F, Liu SB (2018) Aromaticity study of benzene-fused fulvene derivatives using the information-theoretic approach in density functional reactivity theory. Acta Phys-Chim Sin 34:639–649

    CAS  Google Scholar 

  53. Yu DH, Rong CY, Lu T, Geerlings P, De Proft F, Alonso M, Liu SB (2020) Switching between Hückel and Möbius aromaticity: a density functional theory and information-theoretic approach study. Phys Chem Chem Phys 22:4715–4730

    Article  CAS  PubMed  Google Scholar 

  54. Yu DH, Stuyver T, Rong CY, Alonso M, Lu T, De Proft F, Geerlings P, Liu SB (2019) Global and local aromaticity of acenes from the information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 21:18195–18210

    Article  CAS  PubMed  Google Scholar 

  55. Zhao DB, He X, Li M, Wang B, Guo CN, Rong CY, Chattaraj PK, Liu SB (2021) Density functional theory studies of boron clusters with exotic properties in bonding, aromaticity and reactivity. Phys Chem Chem Phys 23:24118–24124

    Article  CAS  PubMed  Google Scholar 

  56. Stanger A (2010) Obtaining relative induced ring currents quantitatively from NICS. J Org Chem 75:2281–2288

    Article  CAS  PubMed  Google Scholar 

  57. Stanger A (2006) Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71:883–893

    Article  CAS  PubMed  Google Scholar 

  58. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao DB, He X, Li M, Guo CN, Rong CY, Chattaraj PK, Liu SB (2021) A density functional theory study of H3+ and Li3+ clusters: similar structures with different bonding, aromaticity, and reactivity properties. In: Chattaraj - atomic clusters with unusual structure, bonding and reactivity. Elsevier

  60. Havenith RWA, De Proft F, Fowler PW, Geerlings P (2005) σ-Aromaticity in H3+ and Li3+: insights from ring-current maps. Chem Phys Lett 407:391–396

    Article  CAS  Google Scholar 

  61. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  62. Fisher RA Theory of Statistical Estimation. (1925) Math Proc Cambridge Philos Soc 22:700–725

  63. Zhao DB, Liu SY, Rong CY, Zhong AG, Liu SB (2018) Toward understanding the isomeric stability of fullerenes with density functional theory and the information-theoretic approach. ACS Omega 3:17986–17990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu SB (2016) Information-theoretic approach in density functional reactivity theory. Acta Phys-Chim Sin 32:98–118

    Article  Google Scholar 

  65. Liu SB (2019) Identity for Kullback-Leibler divergence in density functional reactivity theory. J Chem Phys 151:141103

    Article  PubMed  CAS  Google Scholar 

  66. He X, Li M, Yu DH, Wang B, Zhao DB, Rong CY, Liu SB (2021) Conformational changes for porphyrinoid derivatives: an information-theoretic approach study. Theor Chem Acc 140:123

    Article  CAS  Google Scholar 

  67. Li M, He X, Chen J, Wang B, Liu SB, Rong CY (2021) Density functional theory and information-theoretic approach study on the origin of homochirality in helical structures. J Phys Chem A 125:1269–1278

    Article  CAS  PubMed  Google Scholar 

  68. Liu SB (2021) Principle of chirality hierarchy in three-blade propeller systems. J Phys Chem Lett 12:8720–8725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Professor Shubin Liu from the University of North Carolina is gratefully acknowledged for helpful discussion.

Funding

SJZ and CYR received support from the Science and Technology Innovation Program of Hunan Province (2021RC1003). PKC received from DST, New Delhi, India, the J. C. Bose National Fellowship, grant number SR/S2/JCB-09/2009. DBZ was supported by the startup funding of Yunnan University.

Author information

Authors and Affiliations

Authors

Contributions

P. K. C., C. Y. R., and D. B. Z. conceived and designed the overall project. X. H., C. N. G., M. L., S. J. Z., and X. J. W. carried out the computational studies. X. H., P. K. C., and D. B. Z. analyzed the data and wrote the manuscript with the input of all authors. All authors edited and approved the manuscript.

Corresponding authors

Correspondence to Chunying Rong, Pratim K. Chattaraj or Dongbo Zhao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Guo, C., Li, M. et al. Revisiting the trapping of noble gases (He–Kr) by the triatomic H3+ and Li3+ species: a density functional reactivity theory study. J Mol Model 28, 122 (2022). https://doi.org/10.1007/s00894-022-05099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05099-7

Keywords

Navigation