Skip to main content
Log in

Separation of small molecular peptides with the same amino acid composition but different sequences by high performance liquid chromatography-electrospray ionization-mass spectrometry

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Peptidomics has emerged as a new discipline in recent years. Mass spectrometry (MS) is the most universal and efficient tool for structure identification of proteins and peptides. However, there is a limitation for the identification of peptides with the same amino acid composition but different sequences because these peptides have identical mass spectra of molecular ions. This paper presents a high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for the separation of small molecular peptides with the same amino acid composition but different sequences. Two tripeptides of Gly-Ser-Phe and Gly-Phe-Ser were used as a model sample. The separation behavior has been investigated and the separation conditions have been optimized. Under the optimum conditions, good repeatability was achieved. The developed method could provide a helpful reference for the separation of other peptides with the same amino acid composition but different sequences in the study of proteomics and peptidomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referendes

  1. Hieter P, Boguski M. Functional genomics: It’s all how you read it. Science, 1997, 278: 601–602

    Article  CAS  Google Scholar 

  2. Anderson N G, Matheson A, Anderson N L. Back to the future: The human protein index (HPI) and the agenda for post-proteomic biology. Proteomics, 2001, 1: 3–12

    Article  CAS  Google Scholar 

  3. Hanash S. Disease proteomics. Nature, 2003, 422: 226–232

    Article  CAS  Google Scholar 

  4. Gygi S P, Rochon Y, Franza B R, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol, 1999, 19: 1720–1730

    CAS  Google Scholar 

  5. Yates J R III. Mass spectrometry and the age of the proteome. J Mass Spectrom, 1998, 33: 1–19

    Article  CAS  Google Scholar 

  6. Højlund K, Yi Z P, Hwang H, Bowen B, Lefort N, Flynn C R, Langlais P, Weintraub S T, Mandarino L J. Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics, 2008, 7: 257–267

    Google Scholar 

  7. Washburn M P, Wolters D, Yates J R III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 2001, 19: 242–247

    Article  CAS  Google Scholar 

  8. Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000, 405: 837–846

    Article  CAS  Google Scholar 

  9. Gygi S P, Corthals G L, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA, 2000, 97: 9390–9395

    Article  CAS  Google Scholar 

  10. Shen Y F, Smith R D. Proteomics based on high-efficiency capillary separations. Electrophoresis, 2002, 23: 3106–3124

    Article  CAS  Google Scholar 

  11. Shi Y, Xiang R, Horvath C, Wilkins J A. The role of liquid chromatography in proteomics. J Chromatogr A, 2004, 1053: 27–36

    CAS  Google Scholar 

  12. Kokko K P, Dix T A. Monitoring neurotensin [8–13] degradation in human and rat serum utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem, 2002, 308: 34–41

    Article  CAS  Google Scholar 

  13. Watt A P, Hitzel L, Morrison D, Locker K L. Use of chiral liquid chromatography-tandem mass spectrometry to investigate the metabolism of racemic cholecystokinin-B antagonists. J Chromatogr A, 2000, 896: 217–227

    Article  CAS  Google Scholar 

  14. Chakraborty A B, Berger S J. Optimization of reversed-phase peptide liquid chromatography ultraviolet mass spectrometry analyses using an automated blending methodology. J Biomol Tech, 2005, 16: 327–335

    Google Scholar 

  15. Raida M, Schulz-Knappe P, Heine G, Forssmann W G. Liquid chromatography and electrospray mass spectrometric mapping of peptides from human plasma filtrate. J Am Soc Mass Spectrom, 1999, 10: 45–54

    Article  CAS  Google Scholar 

  16. Vitorino R, Lobo M J C, Duarte J A R, Ferrer-Correia A J, Domingues P M, Amado F M L. Analysis of salivary peptides using HPLC-electrospray mass spectrometry. Biomed Chromatogr, 2004, 18: 570–575

    Article  CAS  Google Scholar 

  17. Léonil J, Gagnaire V, Mollé D, Pezennec S, Bouhallab S. Application of chromatography and mass spectrometry to the characterization of food proteins and derived peptides. J Chromatogr A, 2000, 881: 1–21

    Article  Google Scholar 

  18. Stutz H. Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray-mass spectrometry detection. Electrophoresis, 2005, 26: 1254–1290

    Article  CAS  Google Scholar 

  19. Dolnik V. Capillary electrophoresis of proteins 2003–2005. Electrophoresis, 2006, 27: 126–141

    Article  CAS  Google Scholar 

  20. Kašička V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis, 2006, 27: 142–175

    Article  Google Scholar 

  21. Chen Z L, Boggess B, Chang H C. Open-tubular capillary electrochromatography-mass spectrometry with sheathless nanoflow electrospray ionization for analysis of amino acids and peptides. J Mass Spectrom, 2007, 42: 244–253

    Article  CAS  Google Scholar 

  22. Wu Y, Xie J, Wang F, Chen Z L. Electrokinetic separation of peptides and proteins using polyvinylamine-coated capillary with UV and ESI-MS detections. J Sep Sci, 2008, 31: 814–823

    Article  CAS  Google Scholar 

  23. Wu Y, Xie J, Wang F, Chen Z L. Separation of small molecular peptides with same amino acid composition but different sequences by capillary electrophoresis. J Sep Sci, 2009, 32: 437–440

    Article  CAS  Google Scholar 

  24. Temesi D, Law B. The effect of LC eluent composition on MS responses using electrospray ionization. LC GC North Am, 1999, 17: 626–632

    CAS  Google Scholar 

  25. García M C. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography-electrospray mass spectrometry. J Chromatogr B, 2005, 825:111–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZiLin Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20775055 & 90817103) and the Start-up Funding for ZC’s Luojia Chair Professorship of Wuhan University (Grant No. 306276216)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Chen, Z. Separation of small molecular peptides with the same amino acid composition but different sequences by high performance liquid chromatography-electrospray ionization-mass spectrometry. Sci. China Ser. B-Chem. 52, 2264–2268 (2009). https://doi.org/10.1007/s11426-009-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0232-7

Keywords

Navigation