Skip to main content
Log in

Recognition of amino acids and anions by a Zn(II)-methylazacalix[4]pyridine complex

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

As a powerful macrocyclic host molecule with unique conformation and cavity structure that are fine-tuned by the bridging nitrogen atoms, methylazacalix[4]pyridine (MACP-4) has been shown to selectively recognize Zn2+ and form stable Zn(II)-MACP-4 complexes both in solid state and solution with an association constant up to 5.97 (logK s). The molecular recognition of Zn(II)-MACP-4 complexes towards various amino acids and anions with different geometry was investigated by using the spectral titration methods and X-ray analysis. The Zn(II)-MACP-4 complex was found to recognize the 17 amino acids tested with the association constant up to 3.97 (logK s). On the other hand, the Zn(II)-MACP-4 complex selectively interacted with anions and the maximum association constant of 3.9 (logK s) was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuroda Y, Kato Y, Higashioji, T, Hasegawa J, Kawanami S, Takahashi M, Shiraishi N, Tanabe K, Ogoshi H. Chiral amino acid recognition by a porphyrin-based artificial receptor. J Am Chem Soc, 1995, 117: 10950–10958, and cited references herein

    Article  CAS  Google Scholar 

  2. Imai H, Munakata H, Uemori Y, Sakura N. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin. Inorg Chem, 2004, 43: 1211–1213

    Article  CAS  Google Scholar 

  3. Angelini N, Micali N, Mineo P, Scamporrino E, Villari V, Vitalini D. Uncharged water-soluble Co(II)-porphyrin: A receptor for aromatic α-amino acids. J Phys Chem B, 2005, 109: 18645–18651

    Article  CAS  Google Scholar 

  4. Schmuck C, Machon U. Amino acid binding by 2-(guanidiniocarbonyl) pyridines in aqueous solvents: A comparative binding study correlating complex stability with stereoelectronic factors. Chem Eur J, 2005, 11: 1109–1118

    Article  CAS  Google Scholar 

  5. Ballistreri F P, Notti A, Pappalardo S, Parisi M F, Pisagatte. Multipoint molecular recognition of amino acids and biogenic amines by ureidocalix[5]arene receptors. Org Lett, 2003, 5: 1071–1074

    Article  CAS  Google Scholar 

  6. Kim H J, Asif R, Chung D S, Hong J I. Amino acid recognition of pyridine bis(oxazoline)-copper(II) complex in aqueous solvent. Tetrahedron Lett, 2003, 44: 4335–4338

    Article  CAS  Google Scholar 

  7. Pascal R A, Spergel J, Engbersen D V. Synthesis and X-ray crystallographic characterization of a (1,3,5)cyclophane with three amide N-H groups surrounding a central cavity: A neutral host for anion complexation. Tetrahedron Lett. 1986, 27: 4099–4102

    Article  CAS  Google Scholar 

  8. Valiyaveettil S, Engbersen J F J, Verboom W, Reinhoudt D N. Synthesis and complexation studies of neutral anion receptors. Angew Chem Int Ed Engl, 1993, 32: 900–901

    Article  Google Scholar 

  9. Bisson A P, Lynch V M, Monahan M K C, Anslyn E V. Recognition of anions through NH-π hydrogen bonds in a bicyclic cyclophane-selectivity for nitrate. Angew Chem Int Ed Engl, 1997, 36: 2340–2342

    Article  CAS  Google Scholar 

  10. Kelley T R, Kim M G. Relative binding affinity of carboxylate and its isosteres: Nitro, phosphate, phosphonate, sulfonate, and δ-lactone. J Am Chem Soc, 1994, 116: 7072–7080

    Article  Google Scholar 

  11. Gale P A, Sessler J L, Král V, Lynch V. Calix[4]pyrroles: Old yet new anion-binding agents. J Am Chem Soc, 1996, 118: 5140–5141

    Article  CAS  Google Scholar 

  12. Schmidtchen F P. Inclusion of anions in macrotricyclic quaternary ammonium salts. Angew. Chem Int Ed Engl, 1977, 16: 720–721

    Article  Google Scholar 

  13. Schmidtchen F P. Synthese macrotricyclischer amine. Chem. Ber, 1980, 113: 864–874

    Article  CAS  Google Scholar 

  14. Worm K, Schmidtchen F P. Molecular recognition of anions by zwitterionic host molecules in water. Angew Chem Int Ed Engl, 1995, 34: 65–66

    Article  CAS  Google Scholar 

  15. Yang X, Knobler C B, Hawthorne M F. [12]Mercuracarborand-4, the first representative of a new class of rigid macrocyclic electrophiles: The chloride ion complex of a charge-reversed analogue of [12]crown-4. Angew Chem Int Ed Engl, 1991, 304: 1507–1508

    Article  Google Scholar 

  16. Inoue Y, Hakushi T, Liu Y, Tong L H, Shen B J, Jin D S. Thermodynamics of molecular recognition by cyclodextrins. 1. Calo-rimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy-entropy compensation. J Am Chem Soc, 1993, 115: 475–481

    Article  CAS  Google Scholar 

  17. Mascal M, Armstrong A, Bartberger M D. Anion-aromatic bonding: A case for anion recognition by π-acidic rings. J Am Chem Soc, 2002, 124: 6274–6276

    Article  CAS  Google Scholar 

  18. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà P M. Anion-π interactions: Do they exist? Angew Chem Int Ed, 2002, 41: 3389–3392

    Article  Google Scholar 

  19. Rosokha Y S, Lindeman S V, Rosokha S V, Kochi J K. Halide recognition through diagnostic “anion-π” interactions: Molecular complexes of Cl, Br, and I with olefinic and aromatic π receptors. Angew Chem Int Ed, 2004, 43: 4650–4652

    Article  CAS  Google Scholar 

  20. Berryman O B, Bryantsev V S, Stay D P, Johnson D W, Hay B P. Solution phase measurement of both weak σ and C-H⋯X hydrogen bonding interactions in synthetic anion receptors. J Am Chem Soc, 2007, 129: 48–58

    Article  CAS  Google Scholar 

  21. Wang D X, Zheng Q Y, Wang Q Q, Wang M X. Halide recogniton by tetraoxacalix[2]arene[2]triazine receptors: Concurrent noncovalent halide-π and lone-pair-π interactions in host-halide-water ternary complex. Angew Chem Int Ed, 2008, 47: 7485–7488

    Article  CAS  Google Scholar 

  22. Wang M X, Yang H B. A general and high yielding fragment coupling synthesis of heteroatom-bridged calixarenes and the unprecedented examples of calixarene cavity fine-tuned by bridging heteroatoms. J Am Chem Soc, 2004, 126: 15412–15422

    Article  CAS  Google Scholar 

  23. Katz J L, Feldman M B, Conry R R. Synthesis of functionalized oxacalix[4]arenas. Org Lett, 2005, 7: 91–94

    Article  CAS  Google Scholar 

  24. Katz J L, Selby K J, Conry R R. Single-step synthesis of D 3h-symmetric bicyclooxacalixarenes. Org Lett, 2005, 7: 3505–3507

    Article  CAS  Google Scholar 

  25. Katz J L, Geller B J, Conry R R. Synthesis of oxacalixarenes incorporating nitrogen heterocycles: Evidence for thermodynamic control. Org Lett, 2006, 8: 2755–2758

    Article  CAS  Google Scholar 

  26. Maes W, Van Rossom W, Van Hecke K, Van Meervelt L, Dehaen W. Selective synthesis of functionalized thia- and oxacalix[2]arene[2]-pyrimidines. Org Lett, 2006, 8: 4161–4164

    Article  CAS  Google Scholar 

  27. Hao E, Fronczek F R, Vicente M G H. Synthesis of oxacalixarene-locked bisporphyrins and higher oligomers. J Org Chem, 2006, 71: 1233–1236

    Article  CAS  Google Scholar 

  28. Chambers R D, Hoskin P R, Kenwright A R, Khalil A, Richmond P, Sandford G, Yufit D S, Howard J A K. Polyhalogenated heterocyclic compounds. Macrocycles from perfluoro-4-isopropylpyridine. Org Biomol Chem, 2003: 2137–2147

  29. Chambers R D, Hoskin P R, Khalil A, Richmond P, Sandford G, Yufit D S, Howard J A K. Macrocycles from polyfluoro-pyridine derivatives. J Fluorine Chem, 2002, 116: 19–22

    Article  CAS  Google Scholar 

  30. Li X H, Upton T G, Gibb C L D, Gibb B C. Resorcinarenes as templates: A general strategy for the synthesis of large macrocycles. J Am Chem Soc, 2003, 125: 650–651

    Article  CAS  Google Scholar 

  31. Yang F, Yan L W, Ma K Y, Yang L, Li J H, Chen L J, You J S. Efficient synthesis of a variety of new functionalized oxacalixarenes by Ullmann coupling reactions. Eur J Org Chem, 2006: 1109–1112

  32. Wang Q Q, Wang D X, Ma H W, Wang M X. Synthesis of tetraazacalix[2]arene[2]triazines: Tuning the cavity by the substituents on the bridging nitrogen atoms. Org Lett, 2006, 8: 5967–5970

    Article  CAS  Google Scholar 

  33. Wang Q Q, Wang D X, Zheng Q Y, Wang M X. Formation and conformational conversion of flattened partial cone oxygen bridged calix[2]arene[2]triazines. Org Lett, 2007, 9: 2847–2850

    Article  CAS  Google Scholar 

  34. Hou B Y, Zheng Q Y, Wang D X, Huang Z T, Wang M X. Highly efficient construction of large molecular cavity using 1,3-alternate tetraoxzcalix[2]arene[2]triazine as a platform. Chem Commun, 2008, 3864–3866

  35. Ito A, Ono Y, Tanaka K. Tetraaza[1.1.1.1]metacyclophane. New J Chem, 1998, 779–781

  36. Ito A, Ono Y, Tanaka K. N-methyl-substituted aza[1n]metacyclophane: Preparation, structure, and properties. J Org Chem, 1999, 64: 8236–8241

    Article  CAS  Google Scholar 

  37. Miyazaki Y, Kanbara T, Yamamoto T. Preparation of new type of azacalixarene, azacalix[n](2,6)pyridine. Tetrahedron Lett. 2002, 43: 7945–7948

    Article  CAS  Google Scholar 

  38. Wang M X, Zhang X H, Zheng Q Y. Synthesis, structure, and [60]fullerene complexation properties of azacalix[m]arene[n]pyridines. Angew Chem Int Ed, 2004, 43: 838–842

    Article  CAS  Google Scholar 

  39. Gong H Y, Zhang X H, Wang D X, Ma H W, Zheng Q Y, Wang M X. Methylazacalixpyridines: Remarkable bridging nitrogen-tuned conformations and cavities with unique recognition properties. Chem Eur J, 2006, 12: 9262–9275

    Article  CAS  Google Scholar 

  40. Gong H Y, Zheng Q Y, Zhang X H, Wang D X, Wang M X. Methylazacalix[4]pyridine: En route to Zn2+-specific fluorescence sensors. Org Lett, 2006, 8: 4895–4898

    Article  CAS  Google Scholar 

  41. Gong H Y, Wang D X, Xiang J F, Zheng Q Y, Wang M X. Highly selective recognition of diols by a self-regulating fine-tunable methylazacalix[4]pyridine cavity: Guest-dependent formation of molecular-sandwich and molecular-capsule complexes in solution and the solid state. Chem Eur J, 2007, 13: 7791–7802

    Article  CAS  Google Scholar 

  42. Liu S Q, Wang D X, Zheng Q Y, Wang M X. Synthesis and structure of nitrogen bridged calix[5]- and [10]-pyridines and their complexation with fullerenes. Chem Commun, 2007, 3856–3858

  43. Zhang E X, Wang D X, Zheng Q Y, Wang M X. Synthesis of large macrocyclic azacalix[n]pyridines (n = 6–9) and their complexation with fullerenes C60 and C70. Org Lett, 2008, 10: 2565–2568

    Article  CAS  Google Scholar 

  44. Tsue H, Ishibashi K, Takahashi H, Tamura R. Exhaustively methylated azacalix[4]arene: Preparation, conformation, and crystal structure with exclusively CH/π-controlled crystal architecture. Org Lett, 2005, 7: 2165–2168

    Article  CAS  Google Scholar 

  45. Fukushima W, Kanbara T, Yamamoto T. Azacalix[n]arenas with NH-amino group: NH⋯OCH3 interaction-assisted synthesis, structure, and reactivity. Synlett, 2005, 2931–2934

  46. Selby T D, Blackstock S C. Macrocyclic poly arylamines for rigid connection of poly radical cation spins. Org Lett, 1999, 1, 2053–2055

    Article  CAS  Google Scholar 

  47. Suzuki Y, Yanagi T, Kanbara T, Yamamoto T. Preparation of N-(p-tolyl)azacalix[n](2,6)pyridines constructed of various numbers of the recurring unit. Synlett, 2005, 263–266

  48. Gong H Y, Wang D X, Zheng Q Y, Wang M X. Highly selective complexation of metal ions by the self-tuning tetraazacalixpyridine macrocycles. Tetrahedron, 2009, 87–92

  49. Crystallographic data for MACP-4·1.5ZnI2·I2·H2O (C24H24I5N8-OZn1.5′): Mr = 1173.07, Triclinic, space group P21/m, a = 14.781(3), b = 14.358(3), c = 15.814(3) Å, α = 90.00°, β = 107.87°(3), γ = 90.00°, V = 3194.2(11) Å3, T = 293(2) K, full-matrix least-squares refinement on F 2 converged to R F = 0.1456 [I > 2σ(I)], 0.2065 (all data) and Rw(F 2) = 0.4221 [I > 2σ(I)], 0.4636 (all data), goodness of fit 1.724

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DeXian Wang or MeiXiang Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20672115, 20875094 & 20532030), Ministry of Science and Technology of China (Grant No. 2007CB808005), and the Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H., Wang, D., Huang, Z. et al. Recognition of amino acids and anions by a Zn(II)-methylazacalix[4]pyridine complex. Sci. China Ser. B-Chem. 52, 1639–1645 (2009). https://doi.org/10.1007/s11426-009-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0186-9

Keywords

Navigation