Skip to main content
Log in

Theoretical study on the charge transport properties of triphenylene discogens with a phenylpropionyloxy or 3-phenylpropenoyloxy side chain

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Charge transport is one of the most important properties in organic materials. Charge transport properties of triphenylene discogens with a phenylpropionyloxy or 3-phenylpropenoyloxy side chain have been investigated computationally on the basis of semi-classical Marcus theory. The results show that three triphenylene derivatives have high charge mobility. Title compounds have much better electronic mobility than the triphenylene. The triphenylenes containing 3-phenylpropenoyloxy have better hole mobility, but smaller electronic mobility than the triphenylenes with phenylpropionyloxy. For the triphenylene discogens with a phenylpropionyloxy, the longer the alkloxy chains, the better the positive charge transfer rate, but the smaller the negative charge transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi W Y, Yan F L. Modeling hole and electron mobilities in pentacane ab-plane. Org Electr, 2008, 9: 852–858

    Article  CAS  Google Scholar 

  2. Wang C L, Wang F H, Yang X D, Li Q K, Shuai Z G. Theoretical comparative studies of charge mobilities for molecular materials: Pet versus. bnpery. Org Electr, 2008, 9: 635–640

    Article  CAS  Google Scholar 

  3. Lin B C, Cheng C P, You Z Q, Hsu C P. Charge transport properties of tri(8-hydroxyquinlinato) aluminum(III): Why it is an electron transporter. J Am Chem Soc, 2005, 127: 66–67

    Article  CAS  Google Scholar 

  4. Tse S C, So S K, Yeung M Y, Lo C F, Wen S W, Chen C H. The role of charge-transfer integral in determining and engineering the carrier mobilities of 9,10-di(2-naphthyl) anthrancene compounds. Chem Phy Lett, 2006, 422: 354–357

    Article  CAS  Google Scholar 

  5. Forget S, Kitzerow H S. Preliminary communication optical storage effect in a discotic columnar liquid crystal. Liq Cryst, 1997, 23: 919–922

    Article  CAS  Google Scholar 

  6. Kumar S. Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq Cryst, 2004, 31: 1037–1059

    Article  CAS  Google Scholar 

  7. Zhao K Q, Wang B Q, Hu P, Li Q, Zhang L F. Synthesis of new triphenylene-containing discotic liquid crystals and the influence of fluorophilic effect and molecular symmetry on mesomorphism. Chin J Chem, 2005, 23: 767–774

    Article  CAS  Google Scholar 

  8. Zhao K Q, Wang B Q, Hu P, Gao C Y, Yuan F J, Li H R. New triphenylene based discotic liquid crystals with mixed tails: Molecular symmetry and wide columnar mesophase range. Chin J Chem, 2006, 24: 210–214

    Article  CAS  Google Scholar 

  9. Zhao K Q, Hu P, Wang B Q, Yu W H, Chen H M, Wang X L, Yo S M Z. Synthesis of mixedtTails triphenylene discotic liquid crystals: Molecular symmetry and oxygen-atom effect on the stabilization of columnar mesophases. Chin J Chem, 2007, 25: 375–381

    Article  CAS  Google Scholar 

  10. Ukon M, Sugino T, Watanabe T, Monobe H, Shimizu Y. Photopolymerization and molecular orientational order of the discotic nematic phase in 2,3,6,7,10,11-hexakis(4-(8-acryloyloxyoctyloxy)benzoyloxy) triphenylene. Macrl Mater Eng, 2002, 287: 698–705

    CAS  Google Scholar 

  11. Bonden N, Bushby R J, Cammidge A N. Triphenylene-based discotic-liquid-crystalline Polymers: A universal rational synthesis. J Am Chem Soc, 1995, 117: 924–927

    Article  Google Scholar 

  12. Rego J A, Kumar S, Ringsdorf H. Synthesis and characterization of fluorescent low-symmetry triphenylene dicotic liquid crystals: Tailoring of mesomorphic and optical properties. Chem Mater, 1996, 8: 1402–1409

    Article  CAS  Google Scholar 

  13. Terasawa N, Tanigaki N, Monobe H, Kiyohara K. Aligment behavior for novel triphenylene compounds possessing fluoroalkylated side chains on modified substrates. J Fluor Chem, 2006, 127: 1096–1104

    Article  CAS  Google Scholar 

  14. Wang B Q, Lei B L, Yang G F, Zhao K Q, Yu W H, Hu P, Ding F J. Synthesis and mesomorphism of triphenylene dicogens with a phenylpropionyoxy or 3-phenylpropenoyloxy side chain (in Chinese). Chin J Org Chem, 2007, 27: 1552–1557

    CAS  Google Scholar 

  15. Iqbal Z, Webb A P, Veprek S. Polycrystalline silicon films deposited in a glow discharge at temperatures below 250°C. Phys Lett, 1980, 36: 163–165

    CAS  Google Scholar 

  16. Cheng Y C, Silbey R J, da Silva Filho D A, Calbert J P, Cormil J, Bredas J L. Three-dimensional band structure and bandlike mobility in oligoacene crystals: A theoretical investigation. J Chem Phys, 2003, 118: 3764–3774

    Article  CAS  Google Scholar 

  17. Marcus R A. Electron transfer reaction in chemistry. Theory and experiment. Rev Mod Phys, 1993, 65: 599–610

    Article  CAS  Google Scholar 

  18. Barbara P F, Meyer T J, Ratner M A, Contemporary issues in electron transfer research. J Phys Chem, 1996, 100: 13148–13168

    Article  CAS  Google Scholar 

  19. Balzani V, Juris A, Venturi M, Campagna S, Serroni S. Luminescent and redox-active polynuclear transition metal complexes. Chem Rev, 1996, 96: 759–833

    Article  CAS  Google Scholar 

  20. Malagoli M, Brédas J L. Density function theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem Phys Lett, 2000, 327: 13–17

    Article  CAS  Google Scholar 

  21. Sakanoue K, Motoda M, Sugimoto M, Sakaki S. A molecular orbital study on the hole transport property of organic amine compounds. J Phys Chem A, 1999, 103: 5551–5556

    Article  CAS  Google Scholar 

  22. Lemaur V, Filho D A, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije M G, Craats A M, Senthikumar K, Siebbeles L D A, Warman J M, Bredas J L, Cormil J. Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure-property relationships. J Am Chem Soc, 2004, 126: 3271–3279

    Article  CAS  Google Scholar 

  23. Cornil J, Lemaur V, Calbert J P, Bredas J L. Charge transport in discotic liquid crystals: A molecular scale description. Adv Mater, 2002, 14: 726–729

    Article  CAS  Google Scholar 

  24. Balzani V, Juris A, Venturi M, Campagna S, Serroni S. Luminescent and redox-active polynuclear transition metal complexes. Chem Rev, 1996, 96: 759–833

    Article  CAS  Google Scholar 

  25. Siddarth P, Marcus R A. Electron-transfer reaction in proteins: Electronic coupling in myoglobin. J Phys Chem, 1993, 97: 6111–6114

    Article  CAS  Google Scholar 

  26. Gruhn N E, da Silva Filho D A, Bill T G, Malagoli M, Coropceanu V, Kahn A, Bredas J L. The vibrational reorganization energy in pentacene: Molecular influences on charge transport. J Am Chem Soc, 2002, 124: 7918–7919

    Article  CAS  Google Scholar 

  27. Reimers J R. A practical methord for the use of curvilinear coordinates in calculations of ormal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys, 2001, 115: 9103–9109

    Article  CAS  Google Scholar 

  28. Farazdel A, Dupuis M, Clementi E, Aviram A. Electronic field induced intramolecular electron transfer in Spiro π-electron systems and their suitability as molecular electronic devices. A theoretical study. J Am Chem Soc, 1990, 112: 4206–4214

    Article  CAS  Google Scholar 

  29. Skourlis S S, Beratan D N. Electron transfer contact maps. J Phys Chem B, 1997, 101: 1215–1234

    Article  Google Scholar 

  30. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann Jr R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople G A. Gaussian 03, Revision B, 05. Gaussian, Inc. Pittsburgh, PA, 2003

  31. Sun D G, Ding F J, Zhao K Q. A Quantum-chemical study on charge transport properties of triphenylene discotic crystals substituted with ester or amide functional groups (in Chinese). Acta Chim Sinica, 2008, 66(7): 738–744

    CAS  Google Scholar 

  32. Chen J R, Cai J, Xu B Y, Li Q, Zhao K Q. DFT Study on the effect of different peripheral chains on charge transport properties of triphenylene derivatives. Chin J Chem, 2008, 26: 2292–2296

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50673069), the Research Foundation of Education Bureau of Sichuan Province, China (Grant No. 07ZA093), and Scientific Research Foundation of Sichuan Normal University for Innovation Groups ( Grant No. 025156)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Huang, C., Xu, B. et al. Theoretical study on the charge transport properties of triphenylene discogens with a phenylpropionyloxy or 3-phenylpropenoyloxy side chain. Sci. China Ser. B-Chem. 52, 1192–1197 (2009). https://doi.org/10.1007/s11426-009-0142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0142-8

Keywords

Navigation