Skip to main content
Log in

Influence of NH3-treating temperature on visible light photocatalytic activity of N-doped P25-TiO2

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The influence of NH3-treating temperature on the visible light photocatalytic activity of N-doped P25-TiO2 as well as the relationship between the surface composition structure of TiO2 and its visible light photocatalytic activity were investigated. The results showed that N-doped P25-TiO2 treated at 600°C had the highest activity. The structure of P25-TiO2 was converted from anatase to rutile at 700°C. Moreover, no N-doping was detected at the surface of P25-TiO2. There was no simply linear relationship between the visible light photocatalytic activity and the concentration of doped nitrogen, and visible light absorption. The visible light photocatalytic activity of N-doped P25-TiO2 was mainly influenced by the synergistic action of the following factors: (i) the formation of the single-electron-trapped oxygen vacancies (denoted as V ·o ); (ii) the doped nitrogen on the surface of TiO2; (iii) the anatase TiO2 structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett, 1986, 123: 126–128

    Article  CAS  Google Scholar 

  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271

    Article  CAS  Google Scholar 

  3. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal B: Environ, 2003, 42: 403–409

    Article  CAS  Google Scholar 

  4. Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−x Nx powders. J Phys Chem B, 2003, 107: 5483–5486

    Article  CAS  Google Scholar 

  5. Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeablein V, Frey L, Schumaki P. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett, 2006, 6(5): 1080–1082

    Article  CAS  Google Scholar 

  6. Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeablein V, Kleber S, Schumaki P. TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chem Phys Lett, 2006, 419: 426–429

    Article  CAS  Google Scholar 

  7. Vitiello P R, Macak J M, Ghicov A, Tsuchiya H, Dick L F P, Schumaki P. N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun, 2006, 8: 544–548

    Article  CAS  Google Scholar 

  8. Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J Phys Chem B, 2004, 108: 10617–10620

    Article  CAS  Google Scholar 

  9. Lindgren T, Mwabora J M, Avendano E, Jonsson J, Granqvist C G, Lindquist S E. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B, 2003, 107: 5709–5716

    Article  CAS  Google Scholar 

  10. Livraghi S, Paganini M C, Giamello E, Selloni A, Valentin C D, Pacchioni G. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc, 2006, 128: 15666–15671

    Article  CAS  Google Scholar 

  11. Serpone N. Is the band gap of pristine TiO2 narrowed by anion- and cation- doping of titanium dioxide in second-generation photocatalysts. J Phys Chem B, 2006, 110: 24287–24293

    Article  CAS  Google Scholar 

  12. Kuznetsov V N, Serpone N. Visible light absorption by various titanium dioxide specimens. J Phys Chem B, 2006, 110: 25203–25209

    Article  CAS  Google Scholar 

  13. Emeline A V, Sheremetyeva N V, Khomchenko N V, Ryabchuk V K, Serpone N. Photoinduced formation of defects and nitrogen stabilization of color centers in N-doped titanium dioxide. J Phys Chem C, 2007, 111(30): 11456–11462

    Article  CAS  Google Scholar 

  14. Wang Y, Feng C X, Jin Z S, Zhang J W, Yang J J, Zhang S L. A novel N-doped TiO2 with high visible light photocatalytic activity. J Mol Catal A: Chem, 2006, 260: 1–3

    Article  CAS  Google Scholar 

  15. Wang Y, Zhang J W, Jin Z S, Wu Z S, Zhang S L. Visible light photocatalystic decoloration of methylene blue on novel N-doped TiO2 (in Chinese). Chin Sci Bull, 2007, 52(16): 1973–1976

    Google Scholar 

  16. Feng C X, Wang Y, Jin Z S, Zhang J W, Zhang S L, Wu Z S, Zhang Z J. Photoactive centers responsible for visible-light photocatalytic activity of N-doped TiO2. New J Chem, 2008, 32: 1038–1047

    Article  CAS  Google Scholar 

  17. Zhang J W, Wang Y, Jin Z S, Wu Z S, Zhang Z J. Visible-light photocatalytic behavior of two different N-doped TiO2. Appl Surf Sci, 2008, 254: 4462–4466

    Article  CAS  Google Scholar 

  18. Burda C, Lou Y B, Chen X B, Samia A C S, Stout J, Gole J L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett, 2003, 3(8): 1049–1051

    Article  CAS  Google Scholar 

  19. Gole J L, Stout J D, Burda C, Lou Y B, Chen X B. Highly efficient formation of visible light tunable TiO2−x Nx photocatalysts and their transformation at the nanoscale. J Phys Chem B, 2004, 108(4): 1230–1240

    Article  CAS  Google Scholar 

  20. Chen X B, Lou Y B, Samia A C S, Burda C, Gole J L. Formation of oxynitrate as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater, 2005, 15(1): 41–49

    Article  CAS  Google Scholar 

  21. Prokes S M, Gole J L, Chen X B, Burda C, Carlos W E. Defect-related optical behavior in surface-modified TiO2 nanostructures. Adv Funct Mater, 2005, 15(1): 161–167

    Article  CAS  Google Scholar 

  22. Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N-doping. Appl Catal A: Gen, 2005, 284: 131–137

    Article  CAS  Google Scholar 

  23. Rodriguez J A, Jirsak T, Dvorak J, Sambasivan S, Fischer D. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3. J Phys Chem B, 2000, 104(2): 319–328

    Article  CAS  Google Scholar 

  24. Suda Y, Kawasaki H, Ueda T, Ohshima T. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films, 2004, 453: 162–166

    Article  CAS  Google Scholar 

  25. Saha N C, Tompkins H G. Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study. J Appl Phys, 1992, 72(7): 3072–3079

    Article  CAS  Google Scholar 

  26. Serwicka E, Schlierkamp M W, Schindler R N. Localization of conduction band electrons in polycrystalline TiO2 studied by ESR. Z Naturforch, 1981, 36a: 226–232

    CAS  Google Scholar 

  27. Serwicka E. ESR study on the interaction of water vapour with polycrystalline TiO2 under illumination. Colloids Surf, 1985, 13: 287–293

    Article  CAS  Google Scholar 

  28. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A: Chem, 2000, 161: 205–212

    Article  CAS  Google Scholar 

  29. Qian L, Jin Z S, Zhang J W, Huang Y B, Zhang Z J, Du Z L. Study of the visible-excitation luminescence of NTA-TiO2 (AB) with single- electron-trapped oxygen vacancies. Appl Phys A, 2005, 80: 1801–1805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenSheng Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Wang, Y., Jin, Z. et al. Influence of NH3-treating temperature on visible light photocatalytic activity of N-doped P25-TiO2 . Sci. China Ser. B-Chem. 52, 1164–1170 (2009). https://doi.org/10.1007/s11426-009-0118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0118-8

Keywords

Navigation