Skip to main content
Log in

Theoretical study of the mechanism for C-H bond activation in spin-forbidden reaction between Ti+ and C2H4

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4→TiC2H2 + (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm−1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1-2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two distinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2 +(2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H44IC→IM1-4B24,2ISC→IM1-2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2 +(2A2)+H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freiser B S. Ed. Organometallic Ion Chemistry. The Netherlands: Kiuwer Academic Publisher, 1996

    Google Scholar 

  2. Eller K, Schwarz H. Organometallic chemistry in the gas phase. Chem Rev, 1991, 91(6): 1121–1177

    Article  CAS  Google Scholar 

  3. Weisshaar J C. Bare transition metal atoms in the gas phase: Reactions of M, M+, and M2+ with hydrocarbons. Acc Chem Res, 1993, 26(4): 213–219

    Article  CAS  Google Scholar 

  4. Aristov N, Armentrout P B. Reaction mechanisms and thermochemistry of vanadium ions with ethane, ethene and ethyne. J Am Chem Soc, 1986, 108(8): 1806–1819

    Article  CAS  Google Scholar 

  5. van Koppen P A M, Kemper P R, Bowers M T. Electronic state-selected reactivity of transition metal ions: cobalt(+) and iron(+) with propane. J Am Chem Soc, 1992, 114(27): 10941–10950

    Article  Google Scholar 

  6. van Koppen P A M, Kemper P R, Bowers M T, Fisher E R, Armentrout P B. Relative energetics of C-H and C-C bond activation of alkanes: Reactions of Ni+ and Fe+ with propane on the lowest energy (Adia-batic) potential energy surfaces. J Am Chem Soc, 1994, 116(9): 3780–3791

    Article  Google Scholar 

  7. Wang Y C, Liu Z Y, Geng Z Y, Yang X Y. Theoretical study of activation C-O bond of CH3OCH3 by Ti+ in the gas phase. Chem Phys Lett, 2006, 427: 271–275

    Article  CAS  Google Scholar 

  8. Lv L L, Liu X, Wang Y C, Wang H Q. DFT study of the spin-forbidden reaction between Ti+ and N2O. J Mol Struct (THEOCHEM), 2006, 774: 59–65

    Article  Google Scholar 

  9. Gidden J, van Koppen P A M, Bowers M T. Dehydrogenation of ethene by Ti+ and V+: Excited state effects on the mechanism for C-H bond activation from kinetic energy release distributions. J Am Chem Soc, 1997, 119(17): 3935–3941

    Article  CAS  Google Scholar 

  10. Taylor W S, May J C, Lasater A S. Reactions of Cu+ (1S, 3D) and Au+ (1S, 3D) with CH3Br. J Phys Chem A, 2003, 107(13): 2209–2215

    Article  CAS  Google Scholar 

  11. Porembski M, Weisshaar J C. Singlet and triplet reaction paths for gas-phase Zr+C2H4 by density functional theory. J Phys Chem A, 2001, 105(20): 4851–4864

    Article  CAS  Google Scholar 

  12. Schröder D, Shaik S, Schwarz H. Two-state reactivity as a new concept in organometallic chemistry. Acc Chem Res, 2000, 33(3): 139–145

    Article  Google Scholar 

  13. Guo B C, Kerns K P, Jr. Castleman A W. Chemistry and kinetics of primary reactions of titanium(1+) with water, ammonia, methanol, ethane, and propene at thermal energies. J Phys Chem, 1992, 96(12): 4879–4883

    Article  CAS  Google Scholar 

  14. Lower S K, El-Sayed M A. The triplet state and molecular electronic processes in organic molecules. Chem Rev, 1966, 66(2): 199–241

    Article  CAS  Google Scholar 

  15. Richards W G, Trivedi H P, Cooper D L. Spin-Orbit Coupling in Molecules. New York: Oxford University Press, 1981

    Google Scholar 

  16. Shiota Y, Yoshizawa K. A spin-orbit coupling study on the spin in-version processes in the direct methane-to-methanol conversion by FeO+. J Chem Phys, 2003, 118(13): 5872–5879

    Article  CAS  Google Scholar 

  17. Yarkony D R. Conical intersections: Diabolical and often misunder-stood. Acc Chem Res, 1998, 31(8): 511–518

    Article  CAS  Google Scholar 

  18. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr. Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03 (Revision-B.01), Gaussian Inc., Pittsburgh PA, 2003

    Google Scholar 

  19. Yoshizawa K, Shiota Y, Yamabe T. Reaction pathway for the direct benzene hydroxylation by iron-oxo species. J Am Chem Soc, 1999, 121(1): 147–153

    Article  CAS  Google Scholar 

  20. Lv L L, Liu X, Wang Y C, Wang H Q. A CASSCF study on photo-dissocation of the N2O3 2− dianion. Chem Phys Lett, 2006, 431: 415–420

    Article  Google Scholar 

  21. Gonzalez C, Bernhard S H. Reaction path following in mass-weighted internal coordinates. J Phys Chem, 1990, 94(14): 5523–5527

    Article  CAS  Google Scholar 

  22. Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88(6): 899–926

    Article  CAS  Google Scholar 

  23. Koseki S, Schmidt M W, Gordon M S. MCSCF/6-31G(d, p) calculations of one-electron spin-orbit coupling constants in diatomic molecules. J Phys Chem, 1992, 96(26): 10768–10772

    Article  CAS  Google Scholar 

  24. Danovich D, Shaik S. Spin-orbit coupling in the oxidative activation of H-H by FeO+. Selection rules and reactivity effects. J Am Chem Soc, 1997, 119(7): 1773–1786

    CAS  Google Scholar 

  25. Kemper P R, Bowers M T. Electronic-state chromatography: Application to first-row transition-metal ions. J Phys Chem, 1991, 95(13): 5134–5146

    Article  CAS  Google Scholar 

  26. Reguero M, Olivucci M, Bernardi F, Robb M A. Excited-state potential surface crossings in acrolein: A model for understanding the photochemistry and photophysics of .alpha.,.beta.-enones. J Am Chem Soc, 1994, 116(5): 2103–2114

    Article  CAS  Google Scholar 

  27. Yoshizawa K, Shiota Y, Yamabe T. Intrinsic reaction coordinate analysis of the conversion of methane to methanol by an iron-oxo species: A study of crossing seams of potential energy surfaces. J Chem Phys, 1999, 111(2): 538–544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingLing Lv.

Additional information

Supported by ‘Qinglan’ Talent Engineering Funds by Tianshui Normal University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, L., Liu, X., Yuan, K. et al. Theoretical study of the mechanism for C-H bond activation in spin-forbidden reaction between Ti+ and C2H4 . Sci. China Ser. B-Chem. 52, 295–303 (2009). https://doi.org/10.1007/s11426-009-0062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0062-7

Keywords

Navigation