Skip to main content
Log in

Boron rings containing planar octacoordinate iron and cobalt

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The boron rings containing planar octacoordinate transition metals, D 8h FeB8 2−, CoB8 and CoB8 3+, C 2v FeB8, D 2h CoB8 + and CoB8, are optimized with all real vibrational frequencies at the B3LYP/6–311+G* level of the theory. The D 8h FeB8 2− and CoB8 isomers are global minima, while D 8h CoB8 3+ is only local minimum. The electronic structure character of these systems is revealed by natural bond orbital (NBO) analysis, showing that the boron rings containing planar octacoordinate transition metals have stability and aromaticity with six π electrons. The aromaticity is confirmed by nucleus independent chemical shifts (NICS) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann R, Alder R W, Wilcox C F. Planar tetracoordinate carbon. J Am Chem Soc, 1970, 92(16): 4992–4993

    Article  CAS  Google Scholar 

  2. Collins J B, Dill J D, Jemmis E D, Apeloig Y, Schleyer P v R, Seeger R, Pople J A. Stabilization of planar tetracoordinate carbon. J Am Chem Soc, 1976, 98(18): 5419–5427

    Article  CAS  Google Scholar 

  3. Sorger K, Schleyer P v R. Planar and inherently non-tetrahedral tet-racoordinate carbon: A status report. J Mol Struct: Theochem, 1995, 338(1-3): 317–346

    Article  Google Scholar 

  4. Röttger D, Erker G. Compounds containing planar-tetracoordinate carbon. Angew Chem Int Ed, 1997, 36(8): 812–827

    Article  Google Scholar 

  5. Radom L, Rasmussen D R. The planar carbon story. Pure Appl Chem, 1998, 70(10): 1977–1984

    Article  CAS  Google Scholar 

  6. Siebert W, Gunale A. Compounds containing a planar-tetracoordinate carbon atom as analogues of planar methane. Chem Soc Rev, 1999, 28, 367–371

    Article  CAS  Google Scholar 

  7. Keese R. Carbon flatland: Planar tetracoordinate carbon and fenestranes. Chem Rev, 2006, 106(12): 4787–4808

    Article  CAS  Google Scholar 

  8. Merino G, Ndez-Rojas M A M, Vela A, Heine T. Recent advances in planar tetracoordinate carbon chemistry. J Comput Chem, 2007, 28(1): 362–372

    Article  CAS  Google Scholar 

  9. Exner K, Schleyer P v R. Planar hexacoordinate carbon: A viable possibility. Science, 2000, 290(5469): 1937–1940

    Article  CAS  Google Scholar 

  10. Islas R, Heine T, Ito K, Schleyer P v R, Merino G. Boron rings enclosing planar hypercoordinate group 14 elements. J Am Chem Soc, 2007, 129(47): 14767–14774

    Article  CAS  Google Scholar 

  11. Schleyer P v R, Boldyrev A I. A new, general strategy for achieving planar tetracoordinate geometries for carbon and other second row periodic elements. J Chem Soc Chem Commun, 1991, 1536–1538

  12. Li X, Wang L S, Boldyrev A I, Simons J. Tetracoordinated planar carbon in the Al4C anion. A combined photoelectron spectroscopy and ab initio study. J Am Chem Soc, 1999, 121(25): 6033–6038

    CAS  Google Scholar 

  13. Wang L S, Boldyrev A I, Li X, Simons J. Experimental observation of pentaatomic tetracoordinate planar carbon-containing molecules. J Am Chem Soc, 2000, 122(32): 7681–7687

    Article  CAS  Google Scholar 

  14. Li X, Zhang H F, Wang L S, Geske G D, Boldyrev A I. Pentaatomic tetracoordinate planar carbon, [CAl4]2: A new structural unit and its salt complexes. Angew Chem Int Ed, 2000, 39(20): 3630–3632

    Article  CAS  Google Scholar 

  15. Li Q S, Jin H W. Structure and stability of B5, B5 + and B5 clusters. J Phys Chem A, 2002, 106(30): 7042–7047

    Article  CAS  Google Scholar 

  16. Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys, 2002, 117(17): 7917–7924

    Article  CAS  Google Scholar 

  17. Gribanova T N, Minyaev R M, Minkin V I. Stabilization of planar four-coordinate boron, carbon and silicon atoms in borane clusters: A quantum-chemical study. Russ J Gen Chem, 2005, 75(10): 1651–1658

    Article  CAS  Google Scholar 

  18. Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S, Sheiner E, Fowler P W. Structure and bonding in B6- and B6: Planarity and antiaromaticity. J Phys Chem A, 2003, 107(9): 1359–1369

    Article  CAS  Google Scholar 

  19. Ma J, Li Z H, Fan K N, Zhou M F. Density functional theory study of the B6, B6 +, B6 and B62 clusters. Chem Phys Lett, 2003, 372(5-6): 708–716

    Article  CAS  Google Scholar 

  20. Gribanova T N, Minyaev R M, Minkin V I. Planar hexacoordinated boron in organoboron compounds: An ab initio study. Mendeleev Commun, 2001, 11(5): 169–170

    Article  Google Scholar 

  21. Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S. Electronic structure, isomerism and chemical bonding in B7- and B7. J Phys Chem A, 2004, 108(16): 3509–3517

    Article  CAS  Google Scholar 

  22. Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: Observation and confirmation. Angew Chem Int Ed, 2003, 42(48): 6004–6008

    Article  CAS  Google Scholar 

  23. Fowler P W, Gray B R. Induced currents and electron counting in aromatic boron wheels: B82 and B9 . Inorg Chem, 2007, 46(7): 2892–2897

    Article  CAS  Google Scholar 

  24. Li S D, Ren G M, Miao C Q. D5h Cu5H5X: Pentagonal hydrocopper Cu5H5 containing pentacoordinate planar nonmetal centers (X=B, C, N, O). Eur J Inorg Chem, 2004, 11: 2232–2234

    Article  Google Scholar 

  25. Minyaev R M, Gribanova T N, Starikov A G, Minkin V I. Heptaco-ordinated carbon and nitrogen in a planar boron ring. Dok Chem, 2002, 382(4-6): 41–45

    Article  CAS  Google Scholar 

  26. Minyaev R M, Gribanova T N, Starikov A G, Minkin V I. Octacoordinated main-group element centres in a planar cyclic B8 environment: An ab initio study. Mendeleev Commun, 2001, 11(6): 213–214

    Article  Google Scholar 

  27. Li S D, Miao C Q, Guo J C, Ren G M. Planar tetra-, penta-, hexa-, hepta-, and octacoordinate silicons: A universal structural pattern. J Am Chem Soc, 2004, 126(49): 16227–16231

    Article  CAS  Google Scholar 

  28. Li S D, Guo J C, Miao C Q, Ren G M. C 2h (Bn EmSi)2H2 molecules (E=B, C, Si; n=3–6; m=1, 2) containing double planar tetra-, penta-, and hexacoordinate silicons. J Phys Chem A, 2005, 109(18): 4133–4136

    Article  CAS  Google Scholar 

  29. Li S D, Ren G M, Miao C Q, Jin Z H. M4H4X: Hydrometals (M=Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). Angew Chem Int Ed, 2004, 43(11): 1371–1373

    Article  CAS  Google Scholar 

  30. Li S D, Ren G M, Miao C Q. Hexacoordinate planar main group atoms centered in hexagonal hydrocopper complexes Cu6H6X (X=Si, P, As). Inorg Chem, 2004, 43(20): 6331–6333

    Article  Google Scholar 

  31. Li S D, Miao C Q. M5H5X (M=Ag, Au, Pd, Pt; X=Si, Ge, P, S): Hydrometal pentagons with D 5h planar pentacoordinate nonmetal centers. J Phys Chem A, 2005, 109(33): 7594–7597

    Article  CAS  Google Scholar 

  32. Wang Z X, Schleyer P v R. Construction principles of “hyparenes”: Families of molecules with planar pentacoordinate carbons. Science, 2001, 292(5526): 2465–2469

    Article  CAS  Google Scholar 

  33. Lein M, Frunzke J, Frenking G. A novel class of aromatic com-pounds: Metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew Chem Int Ed, 2003, 42(11): 1303–1306

    Article  CAS  Google Scholar 

  34. Luo Q. Boron rings containing planar octa- and enneacoordinate co-balt, iron and nickel metal elements. Sci Chin Ser B-Chem, 2008, 51(7): 607–613

    Article  CAS  Google Scholar 

  35. Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98(7): 5648–5652

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37(2): 785–789

    Article  CAS  Google Scholar 

  37. Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singgh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  CAS  Google Scholar 

  38. Krishnan R, Binkley J S, Seeger R, Pople J A. Self-consistent molecular orbital methods. X X. A basis set for correlated wave func-tions. J Chem Phys, 1980, 72(1): 650–654

    CAS  Google Scholar 

  39. Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct: Theochem, 1988, 169: 41–62

    Article  Google Scholar 

  40. Schleyer P v R, Maerker C, Dransfeld A, Jiao H J, Hommes N J R v E. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc, 1996, 118(26): 6317–6318

    Article  CAS  Google Scholar 

  41. Ditchfield R. Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO method for NMR chemical shifts. Mol Phys, 1974, 27: 789–807

    Article  CAS  Google Scholar 

  42. Wolinski K, Hilton J F, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc, 1990, 112(23): 8251–8260

    Article  CAS  Google Scholar 

  43. Schleyer P v R, Manoharan M, Jiao H, Stahl F. The acenes: Is there a relationship between aromatic stabilization and reactivity? Org Lett, 2001, 3(23): 3643–3646

    Article  CAS  Google Scholar 

  44. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y K, Morokuma G A, Voth P, Salvador J J, Dannenberg Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03 B 04 ed. Pittsburgh: Gaussian, Inc, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuHui Zhang.

Additional information

Supported by the specialized research fund for the doctoral program of higher education (20060007030)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Tang, Y. & Zhang, X. Boron rings containing planar octacoordinate iron and cobalt. Sci. China Ser. B-Chem. 52, 288–294 (2009). https://doi.org/10.1007/s11426-009-0049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0049-4

Keywords

Navigation