Skip to main content
Log in

Preparation and properties of wheat gluten/silica composites

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG dispersion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Micard V, Belamri R, Morel M H, Guilbert S. Properties of chemically and physically treated wheat gluten films. J Agr Food Chem, 2000, 48 (7): 2948–2953

    Article  CAS  Google Scholar 

  2. Sun S M, Song Y H, Zheng Q. Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten. Food Hydrocolloid, 2007, 21(7): 1005–1013

    Article  CAS  Google Scholar 

  3. Hernandez-Munoz P, Lopez-Rubio A, Lagaron J M, Gavara R. Formaldehyde cross-linking of gliadin films: Effects on mechanical and water barrier properties. Biomacromolecules, 2004, 5(2): 415–421

    Article  CAS  Google Scholar 

  4. Hernandez-Munoz P, Villalobos R, Chiralt A. Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloid, 2004, 18(3): 403–411

    Article  CAS  Google Scholar 

  5. Zhang X Q, Hoobin P, Burgar I, Do M D. Chemical modification of wheat protein-based natural polymers: Cross-linking effect on mechanical properties and phase structures. J Agr Food Chem, 2006, 54(26): 9858–9865

    Article  CAS  Google Scholar 

  6. Hernandez-Munoz P, Kanavouras A, Lagaron J M, Gavara R. Development and characterization of films based on chemically cross-linked gliadins. J Agr Food Chem, 2005, 53(21): 8216–8223.

    Article  CAS  Google Scholar 

  7. John J, Bhattacharya M. Properties of reactively blended soy protein and modified polyesters. Polym Int, 1999, 48(11): 1165–1172

    Article  CAS  Google Scholar 

  8. Lodha P, Netravali A N. Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci, 2002, 37(17): 3657–3665

    Article  CAS  Google Scholar 

  9. Tkaczyk A H, Otaigbe J U, Ho K L G. Bioabsorbable soy protein plastic composites: Effect of polyphosphate fillers on biodegradability. J Polym Environ, 2001, 9(1): 19–23

    Article  CAS  Google Scholar 

  10. Chen P, Zhang L N, Peng S P, Liao B. Effects of nanoscale hydroxypropyl lignin on properties of soy protein plastics. J Appl Polym Sci, 2006, 101(1): 334–341

    Article  CAS  Google Scholar 

  11. Huang J, Zhang L, Wei H, Cao X D. Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. J Appl Polym Sci, 2004, 93(2): 624–629

    Article  CAS  Google Scholar 

  12. Liu W J, Mohanty A K, Askeland P, Drzal L T, Misra M. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer, 2004, 45(22): 7589–7596

    Article  CAS  Google Scholar 

  13. Liu W J, Mohanty A K, Drzal L T, Misra M. Novel biocomposites from native grass and soy based bioplastic: Processing and properties evaluation. Ind Eng Chem Res, 2005, 44(18): 7105–7112

    Article  CAS  Google Scholar 

  14. Liu W J, Misra M, Askeland P, Drzal L T, Mohanty A K. ’Green’ composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation. Polymer, 2005, 46(8): 2710–2721

    Article  CAS  Google Scholar 

  15. Lu Y S, Weng L H, Zhang L N. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 2004, 5(3): 1046–1051

    Article  CAS  Google Scholar 

  16. Mohanty A K, Tummala P, Liu W, Misra M, Mulukutla P V, Drzal L T. Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ, 2005, 13(3): 279–285

    Article  CAS  Google Scholar 

  17. Wang Y X, Cao X D, Zhang L N. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci, 2006, 6(7): 524–531

    Article  CAS  Google Scholar 

  18. Wu Q X, Sakabe H, Isobe S. Processing and properties of low cost corn gluten meal/wood fiber composite. Ind Eng Chem Res, 2003, 42(26): 6765–6773

    Article  CAS  Google Scholar 

  19. Ye P, Reitz L, Horan C, Parnas R. Manufacture and biodegradation of wheat gluten/basalt composite material. J Polym Environ, 2006, 14 (1): 1–7

    Article  CAS  Google Scholar 

  20. Olabarrieta I, Gallstedt M, Ispizua I, Sarasua J R, Hedenqvist M S. Properties of aged montmorillionite-wheat gluten composite films. J Agr Food Chem, 2006, 54(4): 1283–1288

    Article  CAS  Google Scholar 

  21. Song Y, Zheng Q, Liu C. Green biocomposites from wheat gluten and hydroxyethyl cellulose: Processing and properties. Ind Crop Prod, 2008, 28(1): 56–62

    Article  CAS  Google Scholar 

  22. Zhao R X, Torley P, Halley P J. Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci, 2008, 43(9): 3058–3071

    Article  CAS  Google Scholar 

  23. Song Y, Zheng Q, Lai Z. Properties of thermo-molded gluten/glycerol/silica composites. Chin J Polym Sci, 2008, 26(5): 631–638

    Article  CAS  Google Scholar 

  24. Hernandez-Munoz P, Kanavouras A, Villalobos R, Chiralt A. Characterization of biodegradable films obtained from cysteinemediated polymerized gliadins. J Agr Food Chem, 2004, 52(26): 7897–7904

    Article  CAS  Google Scholar 

  25. Song Y H, Zheng Q. Rheological behavior of wheat protein and structure-property relation of protein bioplastics. Acta Polym Sin, 2007, (10): 931–936

    Google Scholar 

  26. Song Y H, Zheng Q A. Preparation and properties of thermo-molded bioplastics of glutenin-rich fraction. J Cereal Sci, 2008, 48(1): 77–82

    Article  CAS  Google Scholar 

  27. Sun S M, Song Y H, Zheng Q. Thermo-molded wheat gluten plastics plasticized with glycerol: Effect of molding temperature. Food Hydrocolloid, 2008, 22 (6): 1006–1013

    Article  CAS  Google Scholar 

  28. Angellier-Coussy H, Torres-Giner S, Morel M H, Gontard N, Gastaldi E. Functional properties of thermoformed wheat gluten/ montmorillonite materials with respect to formulation and processing conditions. J Appl Polym Sci, 2008, 107(1): 487–496

    Article  CAS  Google Scholar 

  29. Fan J, Raghavan S R, Yu X Y, Khan S A, Fedkiw P S, Hou J, Baker G L. Composite polymer electrolytes using surface-modified fumed silicas: conductivity and rheology. Solid State Ionics, 1998, 111(1-2): 117–123

    Article  CAS  Google Scholar 

  30. Gallstedt M, Mattozzi A, Johansson E, Hedenqvist M.S. Transport and tensile properties of compression-molded wheat gluten films. Biomacromolecules, 2004, 5: 2020–2028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50773068) and Natural Science Foundation of Zhejiang Province (Grant No. Y407011)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Zheng, Q. & Zhou, W. Preparation and properties of wheat gluten/silica composites. Sci. China Ser. B-Chem. 52, 257–260 (2009). https://doi.org/10.1007/s11426-009-0034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0034-y

Keywords

Navigation