Skip to main content
Log in

Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod- odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover, the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osland A, Kleppe K. Polyamine induced aggregation of DNA. Nucleic Acids Res, 1977, 4(3): 685–695

    Article  CAS  Google Scholar 

  2. Koltover I, Wagner K, Safinya C R. DNA condensation in two dimensions. Proc Natl Acad Sci USA, 2000, 97(26): 14046–14051

    Article  CAS  Google Scholar 

  3. Raspaud E, Chaperon I, Leforestier A, Livolant F. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J, 1999, 77(3): 1547–1555

    Article  CAS  Google Scholar 

  4. Saminathan M, Antony T, Shirahata A, Sigal L H, Thomas T, Thomas T J. Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry, 1999, 38(12): 3821–3830

    Article  CAS  Google Scholar 

  5. Green J J, Langer R, Anderson D G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res, 2008, 41(6): 749–759

    Article  CAS  Google Scholar 

  6. Stirba S E, Frey H, Haag R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed, 2002, 41(8): 1329–1334

    Article  Google Scholar 

  7. Choi J S, Lee E J, Choi Y H, Jeong Y J, Park J S. Poly(ethylene glycol)-block-poly(L-lysine) dendrimer: Novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjugate Chem, 1999, 10(1): 62–65

    Article  CAS  Google Scholar 

  8. Reschel T, Konák C, Oupicky D, Seymour L W, Ulbrich K. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J Control Release, 2002, 81(1-2): 201–217

    Article  CAS  Google Scholar 

  9. Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke T M. Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J Am Chem Soc, 2006, 128(25): 8176–8184

    Article  CAS  Google Scholar 

  10. Zhu J, Tang A, Law L P, Feng M, Ho K M, Lee D K L, Harris F W, Li P. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjugate Chem, 2005, 16(1): 139–146

    Article  CAS  Google Scholar 

  11. Gebhart C L, Sriadibhatla S, Vinogradov S, Lemieux P, Alakhov V, Kabanov A V. Design and formulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer. Bioconjugate Chem, 2002, 13(5): 937–944

    Article  CAS  Google Scholar 

  12. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H. Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjugate Chem, 2003, 14(3): 581–587

    Article  CAS  Google Scholar 

  13. Liu X, Yang J W, Miller A D, Nack E A, Lynn D M. Charge-shifting cationic polymers that promote self-assembly and self-disassembly with DNA. Macromolecules, 2005, 38(19): 7907–7914

    Article  CAS  Google Scholar 

  14. Kostiainen M A, Hardy J G, Smith D K. High-affinity multivalent DNA binding by using low-molecular-weight dendrons. Angew Chem Int Ed, 2005, 44(17): 2556–2559

    Article  CAS  Google Scholar 

  15. Kostiainen M A, Szilvay G R, Smith D K, Linder M B, Ikkala O. Multivalent dendrons for high-affinity adhesion of proteins to DNA. Angew Chem Int Ed, 2006, 45(21): 3538–3542

    Article  CAS  Google Scholar 

  16. Peng W, Liu P Y, Jiang N, Lin H H, Zhang G L, Yu X Q. Dinuclear macrocyclic polyamine zinc(II) complexes linked with flexible spacers: synthesis, characterization, and DNA cleavage. Bioorg Chem, 2005, 33(5): 374–385

    Article  CAS  Google Scholar 

  17. Liu Y, Reineke T M. Hydroxyl stereochemistry and amine number within poly(glycoamidoamine)s affect intracellular DNA delivery. J Am Chem Soc, 2005, 127(9): 3004–3015

    Article  CAS  Google Scholar 

  18. Guo Y, Sun Y, Li G, Xu Y. The molecular structures of poly(ethylene glycol)-modified nonviral gene delivery polyplexes. Mol Pharm, 2004, 1(6): 477–482

    Article  CAS  Google Scholar 

  19. Krämer M, Stumbé J, Türk H, Krause S, Komp A, Delineau L, Prokhorova S, Kautz H, Haag R. pH-Responsive molecular nanocarriers based on dendritic core-shell architectures. Angew Chem Int Ed, 2002, 41(22): 4252–4256

    Article  Google Scholar 

  20. Dumont A, Jacques V, Peng Q X, Jean F D. Regioselective synthesis of 1,7-diprotected 1,4,7,10-tetraazacyclododecane and preparation of a dialcohol dicarboxylic macrocyclic ligand. Tetrahedron Lett, 1994, 35(22): 3707–3710

    Article  CAS  Google Scholar 

  21. Chim Y T A, Lam J K W, Ma Y, Armes S P, Lewis A L, Roberts C J, Stolnik S, Tendler S J B, Davies M C. Structural study of DNA condensation induced by novel phosphorylcholine-based copolymers for gene delivery and relevance to DNA protection. Langmuir, 2005, 21(8): 3591–3598

    Article  CAS  Google Scholar 

  22. Li Y, Cui L, Li Q, Jia L, Xu Y, Fang Q, Cao A. Novel symmetric amphiphilic dendritic poly(L-lysine)-b-poly(L-lactide)-b-dendritic poly (L-lysine) with high plasmid DNA binding affinity as a biodegradable gene carrier. Biomacromolecules, 2007, 8(5): 1409–1416

    Article  CAS  Google Scholar 

  23. Fiore G L, Edwards J M, Payne S J, Klinkenberg J L, Gioeli D G, Demas J N, Fraser C L. Ruthenium (II) tris(bipyridine)-centered poly(ethylenimine) for gene delivery. Biomacromolecules, 2007, 8(9): 2829–2835

    Article  CAS  Google Scholar 

  24. Jencks W P, Regenstein J. In: Handbook of Biochemistry and Molecular Biology: Physical and Chemical Data, 3rd ed. Fasman G D, ed. Vol. 1. Cleveland: CRC Press, 1975

    Google Scholar 

  25. Catalan J, Abboud J L M, Elguero J. In: Advances Heterocyclic Chemistry, Katritzky A R, ed. Vol. 41. Orlando, FL: Academic Press, 1987. 187–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoQi Yu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20725206 and 20732004), Specialized Research Fund for the Doctoral Program of Higher Education, and Scientific Fund of Sichuan Province for Outstanding Young Scientist

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Wang, N., Zhang, J. et al. Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation. Sci. China Ser. B-Chem. 52, 483–488 (2009). https://doi.org/10.1007/s11426-009-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0028-9

Keywords

Navigation