Skip to main content
Log in

Theoretical study on S1(1B3u) state electronic structure and absorption spectrum of pyrazine

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Making use of a set of quantum chemistry methods, the harmonic potential surfaces of the ground state (S0(1 A g)) and the first (S1(1 B 3u)) excited state of pyrazine are investigated, and the electronic structures of the two states are characterized. In the present study, the conventional quantum mechanical method, taking account of the Born-Oppenheimer adiabatic approximation, is adopted to simulate the absorption spectrum of S1(1 B 3u) state of pyrazine. The assignment of main vibronic transitions is made for S1(1 B 3u) state. It is found that the spectral profile is mainly described by the Franck-Condon progression of totally symmetric mode ν6a. For the five totally symmetric modes, the present calculations show that the frequency differences between the ground and the S1(1 B 3u) state are small. Therefore the displaced harmonic oscillator approximation along with Franck-Condon transition is used to simulate S1(1 B 3u) absorption spectra. The distortion effect due to the so-called quadratic coupling is demonstrated to be unimportant for the absorption spectrum, except the coupling mode ν10a. The calculated S1(1 B 3u) absorption spectrum is in reasonable agreement with the experimental spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lahmani F, Ivanoff N. Mercury sensitization of the isomerization of diazines. J Phys Chem, 1972, 76: 2245–2248

    Article  CAS  Google Scholar 

  2. Knight A E W, Parmenter C S. Radiative and nonradiative processes in the first excited singlet state of azabenzene vapors. Chem Phys, 1976, 15: 85–102

    Article  CAS  Google Scholar 

  3. Yamazaki I, Murao T, Yamanaka T, Yoshihara K. Intramolecular electronic relaxation and photoisomerization processes in the isolated azabenzene molecules pyridine, pyrazine and pyrimidine. Faraday Discuss Chem Soc, 1983, 75: 395–405

    Article  Google Scholar 

  4. Innes K K, Ross I G, Moonaw W R. Electronic states of azabenzenes and azanaphthalenes: A revised and extended critical review. J Mol Spectrosc, 1988, 132: 492–544

    Article  CAS  Google Scholar 

  5. McDonald D B, Rice S A. Single vibronic level fluorescence from 1B3u pyrazine: The role of Fermi resonance and Duschinski rotation. J Chem Phys, 1981, 74: 4893–4906

    Article  CAS  Google Scholar 

  6. Schneider R, Domcke W, KÖppel H. Aspects of dissipative electronic and vibrational dynamics of strongly vibronically coupled systems. J Chem Phys, 1990, 92: 1045–1061

    Article  CAS  Google Scholar 

  7. Seidner L, Stock G, Sobolewski A L, Domcke W. Ab initio characterization of the S1–S2 conical intersection in pyrazine and calculation of spectra. J Chem Phys, 1992, 96: 5298–5309

    Article  CAS  Google Scholar 

  8. Woywood C, Domcke W, Sobolewski A L, Werner H-J. Characterization of the S1–S2 conical intersection in pyrazine using ab initio multiconfiguration self-consistent-field and multireference configuration-interaction methods. J Chem Phys, 1994, 100: 1400–1413

    Article  Google Scholar 

  9. Raab A, Worth G A, Meyer H-D, Cederbaum L S. Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J Chem Phys, 1999, 110: 936–946

    Article  CAS  Google Scholar 

  10. Shalashilin D V, Child M S. Real time quantum propagation on a Monte Carlo trajectory guided grids of coupled coherent states: 26D simulation of pyrazine absorption spectrum. J Chem Phys, 2004, 121: 3563–3568

    Article  CAS  Google Scholar 

  11. Wang L X, Meyer H-D, May V. Femtosecond laser pulse control of multidimensional vibrational dynamics: Computational studies on the pyrazine molecule. J Chem Phys, 2006, 125: 014102-1–014102-12

    Google Scholar 

  12. Stock G, Domcke W. Theory of resonance Raman scattering and fluorescence from strongly vibronically coupled excited states of polyatomic molecules. J Chem Phys, 1990, 93: 5496–5509

    Article  CAS  Google Scholar 

  13. Child M S, Shalashilin D V. Locally coupled coherent states and Herman Kluk dynamics. J Chem Phys, 2003, 118: 2061–2071

    Article  CAS  Google Scholar 

  14. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. GAUSSIAN, Revision D02 (Gaussian, Inc., Wallingford CT, 2004)

    Google Scholar 

  15. Furche F, Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys, 2002, 117: 7433–7446

    Article  CAS  Google Scholar 

  16. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem Phys Lett, 1989, 162: 165–169

    Article  CAS  Google Scholar 

  17. Liang K K, Lin C K, Chang H C, Hayashi M, Lin S H. Theoretical treatments of ultrafast electron transfer from adsorbed dye molecule to semiconductor nanocrystalline surface. J Chem Phys, 2006, 125: 154706-1–154706-16

    Google Scholar 

  18. Lin S H, Bersohn R. Effect of radiation damping on dispersion. J Chem Phys, 1966, 44: 3768–3773

    Article  Google Scholar 

  19. Hill T. An Introduction to Statistical Thermodynamics. Reading: Addison-Wesley Publ. Co.,1960. 89

    Google Scholar 

  20. Zhu L, Johnson P. Vibrations of pyrazine and its ion as studied by threshold ionization spectroscopy. J Chem Phys, 1993, 99: 2322–2331

    Article  CAS  Google Scholar 

  21. Matsuzawa N N, Ishitani A, Dixon D A, Uda T. Time-dependent density functional theory calculations of photoabsorption spectra in the vacuum ultraviolet region. J Phys Chem A, 2001, 105: 4953

    Article  CAS  Google Scholar 

  22. Li Y J, Wan J, Xu X. Theoretical study of the vertical excited states of benzene, pyrimidine, and pyrazine by the symmetry adapted cluster-configuration interaction method. J Comput Chem, 2007, 28: 1658–1667

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoYuan Zhu.

Additional information

Supported by Taiwan National Science Council (Grant Nos. NSC 96-2113-M-009-021 and NSC 96-2811-M-009-023)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, R., Zhu, C., Chin, CH. et al. Theoretical study on S1(1B3u) state electronic structure and absorption spectrum of pyrazine. Sci. China Ser. B-Chem. 51, 1166–1173 (2008). https://doi.org/10.1007/s11426-008-0124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0124-2

Keywords

Navigation