Skip to main content
Log in

Effect of inorganic positive ions on the adsorption of surfactant Triton X-100 at quartz/solution interface

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The electrode-separated piezoelectric sensor (ESPS), an improved setup of quartz crystal microbalance (QCM), has been employed to investigate the adsorption behavior of nonionic surfactant Triton X-100 at the hydrophilic quartz-solution interface in mineralized water medium in situ, which contained CaCl2 0.01 mol·L−1, MgCl2 0.01 mol·L−1, NaCl 0.35 mol·L−1. In a large scale of surfactant concentration, t effects of Ca2+, Mg2+ and Na+ on the adsorption isotherm and kinetics are obviously different. In aqueous solution containing NaCl only, adsorption of Triton X-100 on quartz-solution interface is promoted, both adsorption rate and adsorption amount increase. While in mineralized water medium, multivalent positive ions Ca2+ and Mg2+ are firmly adsorbed on quartz-solution interface, result in the increasing of adsorption rate and adsorption amount at low concentration of surfactant and the peculiar desorption of surfactant at high concentration of Triton X-100. The results got by solution depletion method are in good agreement with which obtained by ESPS. The “bridge” and “separate” effect of inorganic positive ions on the adsorption and desorption mechanism of Triton X-100 at the quartz-solution interface is discussed with molecular dynamics simulations (MD), flame atomic absorption spectrometry (FAAS) and atomic force microscopy (AFM) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scamehorn J F. Phenomena in mixed surfactant systems. ACS Symposium Series 311, Washington, DC: American Chemical Society, 1986. 324

    Google Scholar 

  2. Somasundaran P, Snell E D, Xu Q. Adsorption behavior of alkylarylethoxylated alcohols on silica. J Coll I Sc, 1991, 144(1): 165–173

    Article  CAS  Google Scholar 

  3. Desbene P L, Poret F, Treiner C. Adsorption of pure nonionic alkylethoxylated surfactants down to low concentrations at a silica/water interface as determined using a HPLC technique. J Coll I Sc, 1997, 190(2): 350–356

    Article  CAS  Google Scholar 

  4. Backhaus W K, Klumpp E, Narres H D, Schwuger M J. Adsorption of 2,4-dichlorophenol on montmorillonite and silica: Influence of nonionic surfactants. J Coll I Sc, 2001, 242(1): 6–13

    Article  CAS  Google Scholar 

  5. Shen Y H, Preparation of organobentonite using nonionic surfactants. Chemosphere, 2001, 44(2): 989–995

    Article  CAS  Google Scholar 

  6. Caruso F, Rinia H A, Furlong D N. Gravimetric monitoring of nonionic surfactant adsorption from nonaqueous media onto quartz crystal microbalance electrodes and colloidal silica. Langmuir, 1996, 12(9): 2145–2152

    Article  Google Scholar 

  7. Cavic B A, Thompson M. Adsorptions of plasma proteins and their elutabilities from a polysiloxane surface studied by an on-line acoustic wave sensor. Anal Chem, 2000, 72(7): 1523–1531

    Article  CAS  Google Scholar 

  8. Hu J T, Yang D L, Kang Q, Shen D Z. Estimation the kinetics parameters for non-specific adsorption of fibrinogen on quartz surface from the response of an electrode-separated piezoelectric sensor. Sens Actu B, 2003, 96(1–2): 390–398

    Article  Google Scholar 

  9. Tiberg F, Johnsonn B, Tang J, Lindman B. Ellipsometry Studies of the self-assembly of nonionic surfactants at the silica-water interface: equilibrium aspects. Langmuir, 1994, 10(7): 2294–2300

    Article  CAS  Google Scholar 

  10. Brink J, Tiberg F. Adsorption behavior of two binary nonionic surfactant systems at the silica-water interface. Langmuir, 1996, 12(21): 5042–5047

    Article  Google Scholar 

  11. Penfold J, Staples E J, Tucker I, Thomas R K. Adsorption of mixed cationic and nonionic surfactants at the hydrophilic silicon surface from aqueous solution: the effect of solution composition and concentration. Langmur, 2000, 16(23): 8879–8883

    Article  CAS  Google Scholar 

  12. Cummins P G., Staples E, Penfold J. Temperature dependence of the adsorption of hexaethylene glycol monododecyl ether (C12E6) on silica sols. J Phys Chem, 1991, 95(15): 5902–5905

    Article  CAS  Google Scholar 

  13. Manne S, Gaub H E. Molecular organization of surfactants at solid-liquid interfaces. Science, 1995, 270(5241): 1480–1482

    Article  CAS  Google Scholar 

  14. Patrick H N, Warr G S, Manne S, Aksay I A. Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir, 1997, 13(16): 4349–4356

    Article  CAS  Google Scholar 

  15. Goundla S, Steven O N, Preston B M. Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface. J Am Chem Soc, 2006, 128(3): 848–853

    Article  Google Scholar 

  16. Kunal S, Patrick C, Mayank J. Morphology and mechanical properties of surfactant aggregates at water-silica interfaces: molecular dynamics simulations. Langmuir, 2005, 21(12): 5337–5342

    Article  Google Scholar 

  17. Saurbrey G. Verwendung von Schwingquarzen zur Wagung duner Schlichten und zur Mikrowagung. Z Phys, 1959, 155: 206–222

    Article  Google Scholar 

  18. Allen M P, Tildesley D J. Computers Simulation of Liquids. Oxford: Clarendon Press, 1987. 385

    Google Scholar 

  19. Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985, 31(3): 1695–1697

    Article  Google Scholar 

  20. Manne S, Cleveland J P, Gaub H E, Stucky G D, Hansma P K. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir, 1994, 10(12): 4409–4413

    Article  CAS  Google Scholar 

  21. Patrick H N, Warr G G, Manne S. Aksay I A. Surface micellization patterns of quaternary ammonium surfactants on mica. Langmuir, 1999, 15(5): 1685–1692

    Article  CAS  Google Scholar 

  22. Santanu P, Kartic C, A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Adv Coll In Sc, 2004, 110(3): 75–95

    Article  Google Scholar 

  23. Shen D Z, Li S H, Li W P, Zhang X L, Wang L Z. Adsorption studies of cationic starch onto quartz surface through an electrode-separated piezoelectric sensor. Microchem J, 2002, 71(1): 49–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Supported by the Key Project of SINOPEC (Grant No. P04049) and the National Natural Science Foundation of China (Grant No. 29903006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Y., Li, Y., Cao, X. et al. Effect of inorganic positive ions on the adsorption of surfactant Triton X-100 at quartz/solution interface. Sci. China Ser. B-Chem. 51, 918–927 (2008). https://doi.org/10.1007/s11426-008-0060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0060-1

Keywords

Navigation