Skip to main content
Log in

Noise-induced coherent switch

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Taking the famous genetic toggle switch as an example, we numerically investigated the effect of noise on bistability. We found that extrinsic noise resulting from stochastic fluctuations in synthesis and degradation rates and from the environmental fluctuation in gene regulatory processes can induce coherent switch, and that there is an optimal noise intensity such that the noise not only can induce this switch, but also can amplify a weak input signal. In addition, we found that the intrinsic noise introduced through the Poisson τ-leap algorithm cannot induce such a switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Modern Phys, 1998, 70(1): 223–287

    Article  CAS  Google Scholar 

  2. Hu G, Ditzinger T, Ning C Z, Haken H. Stochastic resonance without extrinsic periodic force. Phys Rev Lett, 1993, 71(6): 807–810

    Article  Google Scholar 

  3. Zhou T S, Chen L N, Aihara K. Molecular communication through stochastic synchronization induced by extracellular fluctuations. Phys Rev Lett, 2005, 95(17): 178103

    Google Scholar 

  4. Han S K, Yim T G, Postnov D E, Sosnovtseva O V. Interacting coherent resonance oscillators. Phys Rev Lett, 1999, 83(9): 1771–1774

    Article  CAS  Google Scholar 

  5. Hasty J, Pradines J, Dolnik M, Collins J J. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA, 2000, 97(5): 2075–2080

    Article  CAS  Google Scholar 

  6. Ptashne M. A Genetic Switch: Phage λ and Higher Organisms (Cell, Cambridge, MA), 1992

    Google Scholar 

  7. McAdams H H, Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA, 1997, 94(3): 814–819

    Article  CAS  Google Scholar 

  8. Issacs F J, Hasty J, Cantor C R, Collins J J. Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci USA, 2003, 100(13): 7714–7719

    Article  Google Scholar 

  9. Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339–342

    Article  CAS  Google Scholar 

  10. Kobayashi H, Kærn M, Araki M, Chung K, Gardner T S, Cantor C R, Collins J J. Programmable cells: Interfacing natural and engineered gene networks. Proc Natl Acad Sci USA, 2004, 101(22): 8414–8419

    Article  CAS  Google Scholar 

  11. Kramer B P, Viretta A. U, El Baba M D, Aubel D, Weber W, Fussenegger M. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol, 2004, 22(7): 867–870

    Article  CAS  Google Scholar 

  12. Xiong W, Ferrell Je Jr. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 2003, 402(6965): 460–464

    Article  Google Scholar 

  13. Bagowski C P, Ferrell J E. Bistability in the JNK cascade. Curr Biol, 2001, 11(15): 1176–1182

    Article  CAS  Google Scholar 

  14. Harding A, Tian T, Westbury E, Frische E, Hancock J F. Subcellular localization determines MAP kinase signal output. Curr Biol, 2005, 15(9): 869–873

    Article  CAS  Google Scholar 

  15. Markevich N I, Hoek J B, Kholodenko B N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol, 2004, 164(3): 353–359

    Article  CAS  Google Scholar 

  16. Pomerening J R, Sontag E D, Ferrell Je Jr. Building a cell cycle oscillator: Hysteresis and bistability in the activiation of Cdc2. Nat Cell Biol, 2003, 5(4): 346–351

    Article  CAS  Google Scholar 

  17. Masaki S, Peter G W. Stochastic gene expression as a many-body problem. Proc Natl Acad Sci USA, 2006, 100(5): 2374–2379

    Google Scholar 

  18. Jonathan M R, Erin K O. Noise in gene expression: Origins, consequences, and control. Science, 2005, 309(5736): 2010–2013

    Google Scholar 

  19. Arkin A, Ross J, McAdams H H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics, 1998, 149(4): 1633–1648

    CAS  Google Scholar 

  20. Tian T H, Burrage K. Stochastic models for regulatory networks of the genetic toggle switch. Proc Natl Acad Sci USA, 2006, 103(22): 8372–8377

    Article  CAS  Google Scholar 

  21. Hasty J, Isaacs F, Dolnik M, McMillen D, Collins J J. Designer gene networks: Towards fundamental cellular control. Chaos, 2001, 11(1): 207–219

    Article  CAS  Google Scholar 

  22. Wang Z W, Hou Z H, Xin H W. Internal signal stochastic resonance in synthetic gene networks. Sci China Ser B-Chem, 2005, 48(3): 189–194

    Article  CAS  Google Scholar 

  23. Arkady S, Pikovsky A, Kurths J. Coherence resonance in a noise-driven excitable system. Phys Rev Lett, 1997, 78(5): 775–778

    Article  Google Scholar 

  24. Pikovsky A, Zaikin A. System size resonance in coupled noisy systems and in the Ising model. Phys Rev Lett, 2002, 88(5): 050601

    Google Scholar 

  25. Liu Q, Jia Y. Fluctuations-induced switch in the gene transcriptional regulatory system. Phys Rev E, 2004, 70(4): 041907

    Google Scholar 

  26. Chen J R. Improving the speed of the genetic toggle switch without sacrificing its dynamic stability. Phys Rev E, 2006, 73(4): 041901

    Google Scholar 

  27. Gillespie D T. Approximate accelerated stochastic simulation chemically reacting systems. J Chem Phys, 2001, 115(4): 1716–1733

    Article  CAS  Google Scholar 

  28. Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403(6767): 335–338

    Article  CAS  Google Scholar 

  29. Ao P. Potential in stochastic differential equations: Novel construction. J Phys A: Math Gen, 2004, 37: L25–L30

    Article  Google Scholar 

  30. Wang J, Huang B, Xia X F, Sun Z R. Funneled landscape leads to robustness of cell networks: Yeast cell cycle. PLoS Comput Biol, 2006, 2(11): 1385–1394

    Article  CAS  Google Scholar 

  31. Jung P, Hänggi P. Stochastic nonlinear dynamics modulated by extrinsic periodic forces. Europhys Lett, 1989, 8: 505–510

    Article  Google Scholar 

  32. Zhou T S, Zhang J J, Yuan Z J, Xu A L. Extrinsic stimuli mediate collective rhythms: Artificial control strategies. PLoS One, 2007, 2: e231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianShou Zhou.

Additional information

Supported by the National Distinguished PhD Dissertations (200521) and the National Natural Science Foundation of China (Grant No. 60736208)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Zhang, J. & Zhou, T. Noise-induced coherent switch. Sci. China Ser. B-Chem. 51, 562–569 (2008). https://doi.org/10.1007/s11426-007-0134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0134-5

Keywords

Navigation