Skip to main content
Log in

Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

In this research, static adsorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene, and fluorene, from aqueous solutions onto hypercrosslinked polymeric adsorbent within the temperature range of 288–308 K is investigated. Several isotherm equations are correlated with the equilibrium data, and the experimental data is found to fit the Polanyi-Dubinin-Manes model best within the entire range of concentrations, providing evidence that pore-filling is the dominating sorption mechanism for PAHs. The study shows that the molecular size of adsorbates has distinct influence on adsorption capacity of hypercrosslinked polymeric adsorbent for the PAHs; the larger the adsorbate molecular size, the lower the adsorption equilibrium capacity. Based on the Polanyi-Dubinin-Manes model, the molecular size of adsorbates was introduced to adjust the adsorbate molar volume. Plots of q v vs. (σε/V s) are collapsed to a single correlation curve for different adsorbates on hypercrosslinked polymeric resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubinin M M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev, 1960, 60: 235–241

    Article  CAS  Google Scholar 

  2. Wohleber D A, Manes M. Application of Polanyi adsorption potential theory to adsorption from solution on activated carbon. II. Adsorption of partially miscible organic liquids from water solution. J Phys Chem, 1971, 75: 61–64

    Article  Google Scholar 

  3. Manes M, Hofer L J E. Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. J Phys Chem, 1969, 73:584–590

    Article  CAS  Google Scholar 

  4. Manes M. Activated carbon adsorption fundamentals. In: Meyers R A, ed. Encyclopedia of Environmental Analysis and Remediation. New York: John Wiley & Sons, 1998, Vol. 1, 26–68

    Google Scholar 

  5. Li L, Quinlivan P A, Knappe N U. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties. Environ Sci Technol, 2005, 39: 3393–3400

    Article  CAS  Google Scholar 

  6. Middaugh D P, Thomas R L, Lantz S E, Heard C S, Mueller J G. Field scale testing of a hyperfiltration unit for removal of creosote and pentachlorophenol from groundwater: chemical and biological assessment. Arch Environ Contam Technol, 1994, 26(3): 309–319

    CAS  Google Scholar 

  7. Schroder H F. Non-biodegradable wastewater compounds treated by ozone or ozone/UV—Conversion monitoring by substance-specific analysis and biotoxicity testing. Water Sci Technol, 1996, 33(6): 331–338

    Article  Google Scholar 

  8. Zeng Y, Andrew Hong P K, Wavrek D A. Integrated chemical-biological treatment of benzo[a]pyrene. Environ Sci Technol, 2000, 34(4): 854–862

    Article  CAS  Google Scholar 

  9. Engwall M A, Pignatello J J, Grasso D. Degradation and detoxification of the wood preservative creosote and pentachlorophenol in water by the photo-Fenton reaction. Water Res, 1999, 33(5): 1151–1158

    Article  CAS  Google Scholar 

  10. Nadarajah N, Hamme J V, Pannu J, Singh A. Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton’s reagent, microbial treatment and surfactants. Appl Microbiol Biotechnol, 2002, 59: 540–544

    Article  CAS  Google Scholar 

  11. Fasnacht M P, Blough N V. Kinetic analysis of the photodegradation of polycyclic aromatic hydrocarbons in aqueous solution. Aquat Sci, 2003, 65: 352–358

    Article  CAS  Google Scholar 

  12. Bertilsson S, Widenfalk A. Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth-influence of water chemistry. Hydrobiologia, 2002, 469: 23–32

    Article  CAS  Google Scholar 

  13. Johnsen A R, Karlson U. Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol, 2004, 63: 452–459

    Article  CAS  Google Scholar 

  14. Lotfabad S K, Gray M R. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol, 2002, 60: 361–365

    Article  CAS  Google Scholar 

  15. Waiters R W, Luthy R G. Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon. Environ Sci Technol, 1984, 18(6): 395–403

    Article  Google Scholar 

  16. Zhu L Z, Chen B L, Luo Y. The properties and mechanism s for organobentonites to sorb polycyclic aromatic hydrocarbons in water. Acta Scientiae Circumstantiae (in Chinese), 2000, 20(1): 21–26

    CAS  Google Scholar 

  17. Ake C L, Wiles M C, Huebner H J, Mcdonald T J, Cosgriff D, Richardson M B, Donnelly K C, Phillips T D. Porous organoclay composite for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere, 2003, 51: 835–844

    Article  CAS  Google Scholar 

  18. Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations. Environ Sci Technol, 2002, 36(17): 3725–3734

    Article  CAS  Google Scholar 

  19. Xu Z Y, Zhang Q X, Fang H H P. Application of porous resin sorbents in industrial wastewater treatment and resource recovery. Cr R Env Sc, 2003, 33: 1–27

    Article  Google Scholar 

  20. Shiu W Y, Ma K C. Temperature dependence of physical-chemical properties of selected chemicals of environmental interest. I. Mononuclear and polynuclear aromatic hydrocarbons. J Phys Chem Ref Data, 2000, 29(1): 41–130

    Article  CAS  Google Scholar 

  21. Mastral A M, Garcı’a T, Calle’n M S, Murillo R, Navarro M V, Lo’pez J M. Sorbent characteristics influence on the adsorption of PAC: I. PAH adsorption with the same number of rings. Fuel Proc Tech, 2002, 77–78: 373–379

    Article  Google Scholar 

  22. Mastral A M, Garcı’a T, Calle’n M S, Murillo R, Lo’pez J M, Navarro M V. Influence of sorbent characteristics on the adsorption of PAC II. Adsorption of PAH with different numbers of rings. Fuel Proc Tech, 2002, 77–78: 365–372

    Article  Google Scholar 

  23. Xia G S, Ball W P. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent. Environ Sci Technol, 1999, 33(2): 262–269

    Article  CAS  Google Scholar 

  24. Ran Y, Xing B S, Rao P S C, Fu J M. Importance of adsorption (Hole-Filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate. Environ Sci Technol, 2004, 38(16): 4340–4348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Long.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50408025)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, C., Li, A., Hu, D. et al. Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory. Sci. China Ser. B-Chem. 51, 586–592 (2008). https://doi.org/10.1007/s11426-007-0111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0111-z

Keywords

Navigation