Skip to main content
Log in

Shape-controlled synthesis of highly monodisperse and small size gold nanoparticles

  • Research Parpers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

We describe here that fine control of nanoparticle shape and size can be achieved by systematic variation of experimental parameters in the seeded growth procedure in aqueous solution. Cubic and spherical gold nanoparticles are obtained respectively. In particularly, the Au cubes are highly monodisperse in 33±2 nm diameter. The experimental methods involve the preparation of Au seed particles and the subsequent addition of an appropriate quantity of Au seed solution to the aqueous growth solutions containing desired quantities of CTAB and ascorbic acid (AA). Here, AA is a weak reducing agent and CTAB is not only a stable agent for nanoparticles but also an inductive agent for leading increase in the face of nanoparticle. Ultraviolet visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) are used to characterize the nanoparticles. The results show that the different size gold nanoparticles displayed high size homogenous distribution and formed mono-membrane at the air/solid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang M H, Ding S W, Wang Z X, Zhang Y Z. Synthesis of mesoporous nano-TiO2 doped with Sn by auto-assembly method and photo-catalytic property. Sci China Ser B-Chem, 2005, 48(5): 436–441

    Article  CAS  Google Scholar 

  2. Suzdalev I P, Suzdalev P L. Nanoclusters and nanocluster systems, assembling, interactions and properties. Russ Chem Rev, 2001, 70: 177–210

    Article  CAS  Google Scholar 

  3. Rao C N, Kulkarni G U, Thomas P J, Edwards P P. Size-dependent chemistry: properties of nanocrystals. Chem Eur J, 2002, 8(1): 28–35

    Article  CAS  Google Scholar 

  4. Quinn B M, Liljeroth P, Ruiz V, Ruiz V, Laaksonen T. Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. J Am Chem Soc, 2003, 125: 6644–6645

    Article  CAS  Google Scholar 

  5. Alvarez M M, Khoury J T, Schaaff T G, Shafigullin M N, Vezmar I, Whetten R L. Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B, 1997, 101: 3706–3712

    Article  CAS  Google Scholar 

  6. Kim Y G, Oh S K, Grooks R M. Preparation and characterization of 1–2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem Mater, 2004, 16: 167–172

    Article  CAS  Google Scholar 

  7. Wang J, Xu D, Kawde A N, Polsky R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem, 2001, 73: 5576–5581

    Article  CAS  Google Scholar 

  8. Li Y, Boone E, El-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic suzuki reactions in aqueous solution. Langmuir, 2002, 18: 4921–4925

    Article  CAS  Google Scholar 

  9. Jarosz M V, Stott N E, Drndic M, Morgan N Y, Kastner M A, Bawendi M G. Observation of bimolecular carrier recombination dynamics in close-packed films of colloidal CdSe nanocrystals. J Phys Chem B, 2003, 107(46): 12585–12588

    Article  CAS  Google Scholar 

  10. Sun Y, Gates B, Mayers B, Xia Y. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2: 165–168

    Article  CAS  Google Scholar 

  11. Chang Y, Lye M L, Zeng H C. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir, 2005, 21(9): 3746–3748

    Article  CAS  Google Scholar 

  12. Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J, 2005, 11: 454–463

    Article  CAS  Google Scholar 

  13. Pei L, Mori K, Adachi M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4 and the shape stabilization. Langmuir, 2004, 20(18): 7837–7843

    Article  CAS  Google Scholar 

  14. Kim F, Song J H, Yang P. Photochemical synthesis of gold nanorods. J Am Chem Soc, 2002, 124(48): 14316–14317

    Article  CAS  Google Scholar 

  15. Nikhil R J, Latha G, Catherine J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B, 2001, 105(19): 4065–4067

    Article  Google Scholar 

  16. Hao E, Bailey R C, Schatz G C, Hupp J T, Li S. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett, 2004, 4(2): 327–330

    Article  CAS  Google Scholar 

  17. Ramaye Y, Neveu S, Cabuil V. Ferrofluids from prism-like nanoparticles. J Magn Magn Mater, 2005, 289: 28–31

    Article  CAS  Google Scholar 

  18. He Y, Shi G. Surface plasmon resonances of silver triangle nanoplates graphic assignments of resonance modes and linear fittings of resonance peaks. J Phys Chem B, 2005, 109(37): 17503–17511

    Article  CAS  Google Scholar 

  19. Sau T K, Murphy C J. Room temperature high-yield synthesis of multiple shapes of goldnanoparticles in aqueous solution. J Am Chem Soc, 2004, 126(28): 8648–8649

    Article  CAS  Google Scholar 

  20. Sau T K, Murphy C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethy lammonium bromide-coated gold nanoparticles of various shapes. Langmuir, 2005, 21(7): 2923–2929

    Article  CAS  Google Scholar 

  21. Kim F, Kwan S, Akana J, Yang P. Langmuir-blodgett nanorod assembly. J Am Chem Soc, 2001, 123(18): 4360–4361

    Article  CAS  Google Scholar 

  22. Remacle F, Collier C P, Markovich G, Heath J R, Banin U, Levine R D. Networks of quantum nanodots: the role of disorder in modifying electronic and optical properties. J Phys Chem, 1998, 102(40): 7727–7734

    CAS  Google Scholar 

  23. Li Q, Walter E C, Vander V, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J Phys Chem B, 2005, 109(8): 3169–3182

    Article  CAS  Google Scholar 

  24. Norris D J, Yao N, Charnock F T, Kennedy T A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett, 2001, 1(1): 3–7

    Article  CAS  Google Scholar 

  25. Nguyen T Q, Bushey M L, Brus L E, Nuckolls C. Tuning intermolecular attraction to create polar order and one-dimensional nanostructures on surfaces. J Am Chem Soc, 2002, 124(50): 15051–15054

    Article  CAS  Google Scholar 

  26. Yang G, Tan L, Yang Y, Chen S, Liu G Y. Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature. Surf Sci, 2005, 589: 129–138

    Article  CAS  Google Scholar 

  27. Yamanea K, Yakushijia K, Ernulta F, Matsuura M, Mitani S, Takanashi K, Fujimori H. Inverse tunnel magnetoresistance associated with coulomb staircases in micro-fabricate granular systems. J Magn Magn Mater, 2004, 6: 272–276

    Google Scholar 

  28. Watzky M A, Finke R G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when Hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc, 1997, 119: 10382–10400

    Article  CAS  Google Scholar 

  29. Jana N R, Peng X. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J Am Chem Soc, 2003, 125: 14280–14281

    Article  CAS  Google Scholar 

  30. Pileni M P, Ninham B W, Gulik-Krzywicki T, Tanori J, Lisiecki I, Filankembo A. Direct relationship between shape and size of template and synthesis of copper metal particles. Adv Mater, 1999, 11: 1358–1362

    Article  CAS  Google Scholar 

  31. Ngo Q, Cruden B A, Cassell A M, Meyyappan S M, Li J, Yang C Y. Hermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Lett, 2004, 4(12): 2403–2407

    Article  CAS  Google Scholar 

  32. Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a Surfactant template. Adv Mater, 2001, 13: 1389–1393

    Article  CAS  Google Scholar 

  33. Li X, Gao H, Murphy C J, Gou L F. Nanoindentation of Cu2O nanocubes. Nano Lett, 2004, 4(10): 1903–1907

    Article  CAS  Google Scholar 

  34. Renou A, Gillet M. Growth of Au, Pt and Pd particles in a flowing argon system: observations of decahedral and icosahedral structures. Surf Sci, 1981, 106: 27–34

    Article  CAS  Google Scholar 

  35. Chen S, Wang Z L, Ballato J, Foulger S H, Carroll D L. Monopod, bipod, ripod, and tetrapod gold nanocrystals. J Am Chem Soc, 2003, 125: 16186–16187

    Article  CAS  Google Scholar 

  36. Prasad B LV, Stoeva S I, Sorensen C M, Klabunde K J. Digestiveripening agents for gold nanoparticles: alternatives to thiols. Chem Mater, 2003, 15: 935–942

    Article  CAS  Google Scholar 

  37. Busbee B D, Obare S O, Murphy C J. An improved synthesis of high-aspect-ratio gold nanorods. Adv Mat, 2003, 15: 414–416

    Article  CAS  Google Scholar 

  38. Petroski J M, Wang Z L, Green T C, El Sayed M. Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B, 1998, 102: 3316–3320

    Article  CAS  Google Scholar 

  39. Cui Y L, Hui W L, Su J, Wang Y N, Chen C. Fe3O4/Au composite nano-particles and their optical properties. Sci China Ser B-Chem, 2005, 48(4): 273–278

    Article  CAS  Google Scholar 

  40. Fu Y Z, Li J R, Du Y K, Yang P, Jiang L. Fromation of long range ordered arrangement of quantum dots with the help of lateral centripetal flow. Surf Sci, 600(4): 835–840

  41. Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc, 1995, 117(22): 6117–6123

    Article  CAS  Google Scholar 

  42. Okahata Y, Ariga K, Tanaka K. Ealuation of a horizongtal lifting method of Langmuir Blodgett films using a quartz-crystal microbalance. Thin Solid Films, 1992, 702:210–211

    Google Scholar 

  43. Johnson C J, Dujardin E, Davis S A, Mann S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem, 2002, 12(6): 1765–1770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du YuKou.

Additional information

Supported by the Chinese Academy of Sciences and National Natural Science Foundation of China (Grant No. 90207026)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Du, Y., Yang, P. et al. Shape-controlled synthesis of highly monodisperse and small size gold nanoparticles. SCI CHINA SER B 50, 494–500 (2007). https://doi.org/10.1007/s11426-007-0085-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0085-x

Keywords

Navigation