Skip to main content
Log in

Direct electrochemistry and enzymatic activity of hemoglobin in positively charged colloid Au nanoparticles and hemoglobin layer-by-layer self-assembly films

  • Research Papers
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Alternate adsorption of positively charged colloid-Au nanoparticles (nano-Au) and negatively charged hemoglobin (Hb) on L-cysteine (L-cys) modified gold electrode resulted in the assembly of {Hb/nano-Au}n layer-by-layer films/L-cys modified gold electrode. The nano-Au was characterized by transmission electron micrograph (TEM) and microelectrophoresis. The modified electrode interface morphology was characterized by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), cyclic voltammograms (CV) and chronoamperometry. Direct electron transfer between hemoglobin and gold electrodes was studied, and the apparent Michaelis-Menten constant (k appm ) of the modified electrode was evaluated to be 0.10 mmol·L−1. Moreover, the higher activity of proteins in the nano-Au films could be retained compared with the electropolymerization membrane, since the proteins in nano-Au films retained their near-native structure. Direct electron transfer between hemoglobin and electrode and electrochemically catalyzed reduction of hydrogen peroxide on a modified electrode was studied, and the linear range was from 2.1×10−8 to 1.2×10−3 mol·L−1 (r=0.994) with a detection limit of 1.1×10−8 mol·L−1 H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wade R S, Castro C E. Oxidation of heme proteins by alkylhalides. J Am Chem Soc, 1973, 95: 231–234

    Article  CAS  Google Scholar 

  2. Ye J, Baldwin R P. Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue. Anal Chem, 1988, 60: 2263–2268

    Article  CAS  Google Scholar 

  3. Reed D E, Hawkridge F M. Direct electron transfer reactions of cytochrome c at silver electrodes. Anal Chem, 1987, 59: 2334–2339

    Article  CAS  Google Scholar 

  4. Fan C, Wang H, Sun S, Zhu D, Wagner G, Li G. Electron transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane. Anal Chem, 2001, 73: 2850–2854

    Article  CAS  Google Scholar 

  5. Sun H, Hu N, Ma H. Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes. Electroanalysis, 2000, 12: 1064–1070

    Article  CAS  Google Scholar 

  6. Liu S Q, Dai Z H, Chen H Y, Ju H X. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens Bioelectron, 2004, 19: 963–969

    Article  CAS  Google Scholar 

  7. Li Q, Luo G, Feng J. Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis, 2001, 13: 359–363

    Article  CAS  Google Scholar 

  8. Zhuo Y, Yuan R, Chai Y Q. A tris(2,2′-bipyridyl)cobalt(III)-bovine serum albumin composite membrane for biosensors. Biomaterials, 2006, 27: 5420–5429

    Article  CAS  Google Scholar 

  9. Yuan R, Tang D P, Chai Y Q, Sun A, Zhang Y, Yang J. Ultrasensitive potentiometric immunosensor based on SA and OCA techniques for immobilization of HBsAb with colloidal Au and polyvinyl butyral as matrixes. Langmuir, 2004, 20: 7240–7245

    Article  CAS  Google Scholar 

  10. Tang D P, Yuan R, Chai Y Q, Fu Y, Dai J, Liu Y, Zhong X. New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2′-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations. Biosens Bioelectron, 2005, 21: 539–548

    Article  CAS  Google Scholar 

  11. Chen S H, Yuan R, Chai Y Q, Zhang L, Wang N, Li X. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles, Biosens Bioelectron. 2007, 22: 1268–1274, available online 19 May 2006

    Article  CAS  Google Scholar 

  12. Xiao Y, Ju H X, Chen H Y. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem, 2000, 278: 22–28

    Article  Google Scholar 

  13. Hua S Q, Xie J W, Xu Q H, Rong K T, Shen G L, Yu R Q. A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon. Talanta, 2003, 61: 769–771

    Article  Google Scholar 

  14. Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277: 1078–1081

    Article  CAS  Google Scholar 

  15. Li C X, Yang M H, Shen G L, Yu R Q. Hydrogen peroxide sensor based on nano-Au colloidsimmobilized on 2,6-pyridinedicarboxylic acid polymer. Acta Chimica Sinica (in Chinese), 2004, 62(17): 1663–1667

    CAS  Google Scholar 

  16. Wang J, Xu D, Kawde A N, Polski R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem, 2001, 73: 5576–5581

    Article  CAS  Google Scholar 

  17. Lyon L A, Musick M D, Natan M J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem, 1998, 70: 5177–5183

    Article  CAS  Google Scholar 

  18. Luo X L, Xu J J, Zhang Q, Yang G J, Chen H Y. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron, 2005, 21: 190–196

    Article  CAS  Google Scholar 

  19. Yuan R, Tang D P, Chai Y Q, Zhang L Y, Liu Y, Zhong X, Dai J Y. Highly sensitive potentiometric immunosensor for hepatitis B surface antigen diagnosis. Sci China. Ser B-Chem, 2004, 34(4): 279–286

    Google Scholar 

  20. Gittins D I, Caruso F. Spontanefous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int Ed, 2001, 16: 3001–3004

    Article  Google Scholar 

  21. Tian Y, Shioda M, Kasahara S, Okajima T, Mao L, Hisaboli T, Ohsaka T. A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on cysteine-bridged SOD electrode. Biochim Biophys Acta, 2002, 1569: 151–158

    CAS  Google Scholar 

  22. Delvauxa M, Walcariusb A, Demoustier-Champagne S. Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta, 2004, 525: 221–230

    Article  Google Scholar 

  23. Zhao L Y, Liu H Y, Hu N F. Electroactive films of heme protein-coated multiwalled carbon nanotubes. J Colloid Interf Sci, 2006, 296: 204–211

    Article  CAS  Google Scholar 

  24. Qi H L, Zhang C X, Li X R. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin. Sensors Actuators B, 2006, 114: 364–370

    Article  Google Scholar 

  25. Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem, 2001, 516: 119–126

    Article  CAS  Google Scholar 

  26. Kamin R A, Willson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem, 1980, 52: 1198–1205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Ruo.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20675064), the Natural Science Foundation of Chongqing City, China (Grant Nos. CSTC-2004 BB4149, 2005 BB4100) and High Technology Project Foundation of Southwest University (Grant No. XSGX02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, R., Cao, S., Chai, Y. et al. Direct electrochemistry and enzymatic activity of hemoglobin in positively charged colloid Au nanoparticles and hemoglobin layer-by-layer self-assembly films. SCI CHINA SER B 50, 620–628 (2007). https://doi.org/10.1007/s11426-007-0045-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0045-5

Keywords

Navigation