Skip to main content
Log in

Novel gaseous transient species: Generation and characterization

  • Reviews
  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Due to special properties of transient species, such as short-lived, unstable, reactive, and even explosive, the generation and subsequent characterization is a great challenge for experimental chemists. In our laboratory, systematic researches have been carried out to investigate novel transient species: reactive halogen species (RHS), short-lived free radicals, and metastable pseudohalogen compounds, based on the successive technical improvements on the Hel Photoelectron spectroscopy (PES). In this review, the topic mainly focuses on innovative methods of generating novel transient species, and subsequent geometric and electronic structure characterizations of these species combined with quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Ahsen S, Willner H, Francisco J S. The trifluoromethyltrioxy radical, CF3OOO. Angew Chem Int Ed, 2003, 42(38): 4690–4693

    Article  CAS  Google Scholar 

  2. Kronberg M, von Ahsen S, Willner H, Francisco J S. The SF5Ox radicals, x = 0–3. Angew Chem Int Ed, 2005, 44(2): 253–257

    Article  CAS  Google Scholar 

  3. Friderichsen A V, Radziszewski J G, Nimlos M R, Winter P R, Dayton D C, David D E, Ellison G B. The infrared spectrum of the matrix-isolated phenyl radical. J Am Chem Soc, 2001, 123(9): 1977–1988

    Article  CAS  Google Scholar 

  4. Schulz A, Tornieporth-Oetting I C, Klapötke T M. Nitrosyl azide, N4O, an intrinsically unstable oxide of nitrogen. Angew Chem Int Ed, 1993, 32(11): 1610–1612

    Article  Google Scholar 

  5. Maier G, Teles J H. Isolation and photoisomerization of simply substituted nitrile oxides. Angew Chem Int Ed, 1987, 26(2): 155–156

    Article  Google Scholar 

  6. Khabashesku V N, Kudin K N, Tamas J, Boganov S E, Margrave J L, Nefedov O M. Transient 1,1-dimethyl-1-germene, (CH3)2Ge=CH2. Gas-phase pyrolytic generation and EIMS, matrix isolation FTIR, and theoretical studies. J Am Chem Soc, 1998, 120(20): 5005–5016

    Article  CAS  Google Scholar 

  7. Johnston L J. Photochemistry of radicals and biradicals. Chem Rev, 1993, 93(1): 251–266

    Article  CAS  Google Scholar 

  8. Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chemistry of acyl radicals. Chem Rev, 1999, 99(8): 1991–2070

    Article  CAS  Google Scholar 

  9. Turner D W, Al-Joboury M I. Determination of ionization potentials by photoelectron energy measurement. J Chem Phys, 1962, 37(12): 3007–3008

    Article  CAS  Google Scholar 

  10. Rabalais J W. Principles of Ultraviolet Photoelectron Spectroscopy. Wiley: New York, 1977

    Google Scholar 

  11. Ghosh P K. Introduction to Photoelectron Spectroscopy. Wiley: New York, 1983

    Google Scholar 

  12. Rademacher P. Photoelectron spectra of cyclopropane and cyclopropene compounds. Chem Rev, 2003, 103(4): 933–975

    Article  CAS  Google Scholar 

  13. Koopmans T. ron Uber dir zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eins atoms (in German). Physica (Amsterdam), 1934, 1(1): 104–113

    Article  Google Scholar 

  14. Deleuze M S, Delhalle J. Outer-valence Green’s function study of cycloalkane and cycloalkyl-alkane compounds. J Phys Chem A, 2001, 105(27): 6695–6702

    Article  CAS  Google Scholar 

  15. Lemierre V, Chrostowska A, Dargelos A, Chermette H. Calculation of ionization potentials of small molecules: A comparative study of different methods. J Phys Chem A, 2005, 109(37): 8348–8355

    Article  CAS  Google Scholar 

  16. Zeng X Q, Ge M F, Sun Z, Wang D X. Bis(trifluoroaceto) disulfide (CF3C(O)OSSOC(O)CF3): A HeI photoelectron spectroscopy and theoretical study. J Phys Chem A, 2006, 110(17): 5685–5691

    Article  CAS  Google Scholar 

  17. Platt U, Hönninger G. The role of halogen species in the troposphere. Chemosphere, 2003, 52(2): 325–338

    Article  CAS  Google Scholar 

  18. Peters C, Pechtl S, Stutz J, Hebestreit K, Hönninger G, Heumann K G, Schwarz A, Winterlik J, Platt U. Reactive and organic halogen species in three different European coastal environments. Atmos Chem Phys, 2005, 5: 3357–3375

    Article  CAS  Google Scholar 

  19. Montzka S A, Butler J H, Myers R C, Thompson T M, Swanson T H, Clarke A D, Lock L T, Elkins J W. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion. Science, 1996, 272(5266): 1318–1322

    Article  CAS  Google Scholar 

  20. Wang L, Arey J, Atkinson R. Reactions of chlorine atoms with a series of aromatic hydrocarbons. Environ Sci Technol, 2005, 39(14): 5302–5310

    Article  CAS  Google Scholar 

  21. Ogryzlo E A. Surface recombination of chlorine and bromine atoms. J Phys Chem, 1961, 65(1): 191–192

    CAS  Google Scholar 

  22. Li S, Li Y, Wang D X. HeI photoelectron spectroscopic (UPS) study of microwave-discharge species of the freon compounds. Chinese Sci Bull, 1995, 40(7): 557–560

    CAS  Google Scholar 

  23. Wang D X, Li Y, Li S, Chen B M, Zhao H Q. HeI photoelectron spectroscopic (UPS) study of transient species-bromine atom. Chinese Sci Bull (in Chinese), 1994, 39(24): 2244–2246

    Google Scholar 

  24. Wang D X, Li C H, Qian X M, Gablin S D. A HeI photoelectron spectrum of bromine atoms—The use of SiBr4 as a bromine atom source. J Electron Spectrosc Relat Phenom, 1998, 97(1–2): 59–61

    Article  CAS  Google Scholar 

  25. De Leeuw D M, Mooyman R, De Lange C A. He(I) photoelectron spectroscopy of halogen atoms. Chem Phys Lett, 1978, 54(2): 231–234

    Article  Google Scholar 

  26. Wang D X, Li Y, Li S, Zhao H Q. HeI photoelectron spectroscopy (UPS) of iodine atoms. Chem Phys Lett, 1994, 222(1–2): 167–170

    Article  CAS  Google Scholar 

  27. Rossi M J. Heterogeneous reactions on salts. Chem Rev, 2003, 103(12): 4823–4882

    Article  CAS  Google Scholar 

  28. Qiao Z M, Sun S T, Sun Q, Zhao J C, Wang D X. Vacuum synthesis and determination of the ionization energies of different molecular orbitals for BrOBr and HOBr. J Chem Phys, 2003, 119(14): 7111–7114

    Article  CAS  Google Scholar 

  29. Casper B, Dixon D A, Mack H, Ulic S E, Willner H, Oberhammer H. Molecular structure of fluorine nitrate: Dangerous for experiment and theory. J Am Chem Soc 1994, 116(18): 8317–8321

    Article  CAS  Google Scholar 

  30. Parthiban S, Lee T J, Guha S, Francisco J S. Theoretical study of chlorine nitrates: Implications for stratospheric chlorine chemistry. J Am Chem Soc, 2003, 125(34): 10446–10458

    Article  CAS  Google Scholar 

  31. Spencer J E, Rowland F S. Bromine nitrate and its stratospheric significance. J Phys Chem, 1978, 82(1): 7–10

    Article  CAS  Google Scholar 

  32. Golden D M. Evaluating data for atmospheric models, an example: IO + NO2 = IONO2. J Phys Chem A, 2006, 110(9): 2940–2943

    Article  CAS  Google Scholar 

  33. Wang D X, Jiang P, Zhang Q Y. HeI photoelectron spectrum (PES) of fluorine nitrate, FONO2. Chem Phys Lett, 1996, 262(6): 771–775

    Article  CAS  Google Scholar 

  34. Jensen J O. Vibrational frequencies and structural determination of fluorine nitrate. J Mol Struct (Theochem), 2005, 716(1–3): 11–17

    Article  CAS  Google Scholar 

  35. Wang D X, Li Y, Jiang P, Wang X H, Chen B M. The study of Hel photoelectron spectroscopy (PES) of the lectronic structure for ClONO2. Chem Phys Lett, 1996, 260(1–2): 99–102

    Article  CAS  Google Scholar 

  36. Wang D X, Jiang P. The HeI photoelectron spectroscopy study on the electronic structure of bromine nitrate, BrONO2. J Phys Chem, 1996, 100(11): 4382–4384

    Article  CAS  Google Scholar 

  37. Sun S T, Zeng Y L, Meng L P, Zheng S J, Wang D X, Mok D K, Chau F T. A new reaction: Vacuum synthesis and characterization of IONO and IONO2. J Electron Spectrosc Relat Phenom, 2005, 142(3): 261–264

    Article  CAS  Google Scholar 

  38. Casper B, Lambotte P, Minkwitz R, Oberhammer H. Gas-phase structures of chlorine nitrate and bromine nitrate (ClONO2 and BrONO2). J Phys Chem, 1993, 97(39): 9992–9995

    Article  CAS  Google Scholar 

  39. Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S. Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules. Japan Scientific Society Press: Tokyo, 1981

    Google Scholar 

  40. Allan B J, Plane J M C. A study of the recombination of IO with NO2 and the stability of INO3: Implications for the atmospheric chemistry of iodine. J Phys Chem A, 2002, 106(37): 8364–8641

    Article  CAS  Google Scholar 

  41. Simonaitis R, Heicklen J. Perchloric acid: Possible sink for stratospheric chlorine. Planet Space Sci, 1975, 23: 1567–1569

    Article  CAS  Google Scholar 

  42. Dasgupta P K, Martinelango P K, Jackson W A, Anderson T A, Tian K, Tock R W, Rajagopalan S. The origin of naturally occurring perchlorate: The role of atmospheric processes. Environ Sci Technol, 2005, 39(6): 1569–1575

    Article  CAS  Google Scholar 

  43. Li C H, Hong G Y, Chen B M, Wang D X. HeI photoelectron spectroscopic (PES) study on the electron structure of perchloric acid, HOClO3, and fluorine perchlorate, FOClO3. J Phys Chem A, 1998, 102(22): 3877–3879

    Article  CAS  Google Scholar 

  44. Bryce D L, Wasylishen R E, Autschbach J, Ziegler T. Periodic trends in indirect nuclear spin-spin coupling tensors: Relativistic density functional calculations for interhalogen diatomics. J Am Chem Soc, 2002, 124(17): 4894–4900

    Article  CAS  Google Scholar 

  45. Qiao Z M, Sun Q, Sun S T, Wang D X. Photoelectron spectroscopy (PES) and theoretical studies on bromine monochloride (in Chinese). Acta Chimica Sinica, 2004, 62(4): 433–435

    CAS  Google Scholar 

  46. Orlando J J, Tyndall G S. The atmospheric chemistry of alkoxy radicals. Chem Rev, 2003, 103(12): 4657–4689

    Article  CAS  Google Scholar 

  47. Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds. Chem Rev, 2003, 103(12): 4605–4638

    Article  CAS  Google Scholar 

  48. Wang D X, Li, S, Li Y, Zheng S J, Ding C F, Gao Y Q, Chen W. HeI photoelectron spectroscopic (PES) studies of the electronic structure for alkyl nitrites CH3(CH2)nONO (n = 0, 1, 2, 3). J Electron Spectrosc Relat Phenom, 1996, 82(1–2): 19–22

    Article  CAS  Google Scholar 

  49. Curtiss L A, Kock L D, Pople J A. Energies of CH2OH, CH3O, and related compounds. J Chem Phys, 1991, 95(6): 4040–4043

    Article  CAS  Google Scholar 

  50. Ruscic B, Berkowitz J. Photoionization mass-spectrometric studies of the isomeric transient species CD2OH and CD2O. J Chem Phys, 1991, 95(6): 4033–4039

    Article  CAS  Google Scholar 

  51. Kuo S, Zhang Z Y, Klemm R B, Liebman J F, Stief L J, Nesbitt F L. Photoionization of hydroxymethyl (CD2OH and CD2OD) and methoxy (CD3O) radicals: Photoion efficiency spectra, ionization energies, and thermochemistry. J Phys Chem, 1994, 98(15): 4026–4033

    Article  CAS  Google Scholar 

  52. Zhu X J, Ge M F, Wang J, Sun Z, Wang D X. First experimental observation on different ionic states of both methylthio (CH3S) and methoxy (CH3O) radicals. Angew Chem Int Ed, 2000, 39(11): 1940–1943

    Article  CAS  Google Scholar 

  53. Wang J, Sun Z, Zhu X J, Ge M F, Wang D X. First experimental observation on different ionic states of the CH3CH2O radical: A HeI photoelectron spectrum of the ethoxy CH3CH2O radical. Chem Phys Lett, 2001, 340(1–2): 98–102

    Article  CAS  Google Scholar 

  54. Sun Z, Zheng S J, Meng L P, Wang D X. HeI photoelectron spectroscopy of the isoproxy (CH3)2CHO radical. Chem Phys Lett, 2003, 369(1–2): 180–183

    CAS  Google Scholar 

  55. Sun Z, Zheng S J, Wang J, Ge M F, Wang D X. First experimental observation on different ionic states of the tert-butoxy [(CH3)3CO·] radical. Chem Eur J, 2001, 7(14): 2995–2999

    Article  CAS  Google Scholar 

  56. Bentley R, Chasteen T G. Environmental VOSCs-formation and degredation of dimethyl sulfide, methanethiol and related materials. Chemosphere, 2004, 55(3): 291–317

    Article  CAS  Google Scholar 

  57. Kastner J R, Buquoi Q, Ganagavaram B, Das K C. Catalytic ozonation of gaseous reduced sulfur compounds using wood fly ash. Environ Sci Technol, 2005, 39(6): 1835–1842

    Article  CAS  Google Scholar 

  58. Bise R T, Choi H, Pedersen H B, Mordaunt D H, Neumark D M. Photodissociation spectroscopy and dynamics of the methylthio radical (CH3S). J Chem Phys, 1999, 110(2): 805–816

    Article  CAS  Google Scholar 

  59. Marenich A V, Boggs J E. Ab initio study of spin-vibronic dynamics in the ground X2E and excited Ã2A1 electronic states of CH3S·. J Chem Theory and Comput, 2005, 1(6): 1162–1171

    Article  CAS  Google Scholar 

  60. Nourbakhsh S, Norwood K, He G Z, Ng C Y. Photoionization study of supersonically cooled polyatomic radicals: heat of formation of the thiomethoxy ion (CH3S+). J Am Chem Soc, 1991, 113(16): 6311–6312

    Article  CAS  Google Scholar 

  61. Curtiss L A, Nobes R H, Pople J A, Radom L. Theoretical-study of the organosulfur systems CSHn (n = 0−4) and CSHn + (n = 0−5): Dissociation energies, ionization energies, and enthalpies of formation. J Chem Phys, 1992, 97(9): 6766–6773

    Article  CAS  Google Scholar 

  62. Ge M F, Wang J, Sun Z, Zheng S J, Wang D X. First experimental observation on different ionic states of the CH3SS radical: A HeI photoelectron spectrum. J Chem Phys, 2001, 114(7): 3051–3054

    Article  CAS  Google Scholar 

  63. Ge M F, Wang J, Zhu X J, Sun Z, Wang D X. Experimental and theoretical studies on different ionic states of ethylthio CH3CH2S radical. J Chem Phys, 2000, 113(5): 1866–1869

    Article  CAS  Google Scholar 

  64. Yao L, Zeng X Q, Ge M F, Ding Y F, Wang W G, Du L, Sun Z, Sun Q, Wang D X. First experimental observation on different ionic states of isopropylthio ((CH3)2CHS) radical. Chem Phys Lett, 2006, 422(4–6): 466–469

    Article  CAS  Google Scholar 

  65. Sun Q, Li Z, Zeng X Q, Wang W G, Sun Z, Ge M F, Wang D X, Mok D K, Chau F T. First experimental observation of the CH3Se radical. ChemPhysChem, 2005, 6(10): 2032–2035

    Article  CAS  Google Scholar 

  66. Hung W C, Sheng M Y, Lee Y P, Wang N S, Chen B M. Photoionization spectra and ionization thresholds of CH3SO, CH3SOH, and CH3SS(O)CH3. J Chem Phys, 1996, 105(17): 7402–7411

    Article  CAS  Google Scholar 

  67. Amouroux D, Liss P S, Tessier E, Hamren-Larsson M, Donard O F D. Role of oceans as biogenic sources of selenium. Earth Planet Sci Lett, 2001, 189(3–4): 277–283

    Article  CAS  Google Scholar 

  68. Danen W C, West C T. Nitrogen-centered free radicals: III. Formation and electron spin resonance spectra of N-alkoxy-N-alkylamino free radicals in solution. J Am Chem Soc, 1971, 93(21): 5582–5584

    Article  CAS  Google Scholar 

  69. Wang J, Chan W G, Haut S A, Krauss M R, Izac R R, Hempfling W P. Determination of total N-nitroso compounds by chemical denitrosation using CuCl. J Agric Food Chem, 2005, 53(12): 4686–4691

    Article  CAS  Google Scholar 

  70. Jiang P, Qian X M, Li C H, Wang D X. HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines. Chem Phys Lett, 1997, 277(5–6): 508–512

    Article  CAS  Google Scholar 

  71. Qiao C H, Hong G Y, Wang D X. The electronic structure of the (CH3)2N radical and the pyrolysis mechanism of dimethylnitrosamine: A HeI photoelectron spectroscopic study. J Phys Chem, 1999, 103(13): 1972–1975

    CAS  Google Scholar 

  72. Qiao C H, Ge M F, Wang D X. HeI photoelectron spectroscopic study on the electronic structure of the (CH3CH2)2N neutral radical. Chem Phys Lett, 1999, 305(5–6): 359–364

    Article  CAS  Google Scholar 

  73. Zhu X J, Ge M F, Qiao C H, Sun Z, Wang D X. A He I photoelectron spectrum of the (CH3CH2CH2)2N radical. Chem Phys Lett, 2000, 319(1–2): 85–88

    Article  CAS  Google Scholar 

  74. Berry R S. Nitrenes. Wiley-Interscience: New York, 1970

    Google Scholar 

  75. Bock H, Dammel R. Gas-phase reactions. 66. Gas-phase pyrolyses of alkyl azides: experimental evidence for chemical activation. J Am Chem Soc, 1988, 110(16): 5261–5269

    Article  CAS  Google Scholar 

  76. Wang J, Sun Z, Zhu X J, Ge M F, Wang D X. The CH3N diradical: Experimental and theoretical determinations of the ionization energies. Angew Chem Int Ed, 2001, 40(16): 3055–3057

    Article  CAS  Google Scholar 

  77. Travers M J, Cowles D C, Clifford E P, Barney E G, Engelking P C. Photoelectron spectroscopy of the CH3N- ion. J Chem Phys, 1999, 111(12): 5349–5360

    Article  CAS  Google Scholar 

  78. Yang X J, Sun Z, Ge M F, Zheng S J, Wang D X. The CH3CH2N: diradical: Generation conditions and determination of its ionization energies. ChemPhysChem, 2002, 3(11): 963–966

    Article  CAS  Google Scholar 

  79. Sun Z, Wang D, Ding R, Ge M F, Wang D X. The diradical (CH3)2CHN and its isomeric molecule (CH3)2C=HN: Generation and characterization. J Chem Phys, 2003, 119(1): 293–299

    Article  CAS  Google Scholar 

  80. Che H J, Bi H M, Ding R, Wang D, Meng L P, Zheng S J, Wang D X. First determination of ionization energies of phenylnitrene. Chem Phys Lett, 2003, 382(3–4): 291–296

    CAS  Google Scholar 

  81. Borden W T, Gritsan N P, Hadad C M, Karney W L, Kemnitz C R, Platz M S. The interplay of theory and experiment in the study of phenylnitrene. Acc Chem Res, 2000, 33(11): 765–771

    Article  CAS  Google Scholar 

  82. Kemnitz C R, Karney W L, Borden W T. Why are nitrenes more stable than carbenes? An ab initio study. J Am Chem Soc, 1998, 120(14): 3499–3503

    Article  CAS  Google Scholar 

  83. Zeng Y L, Sun Q, Meng L P, Zheng S J, Wang D X. Theoretical calculational studies on the mechanism of thermal dissociations for RN3 (R=CH3, CH3CH2, (CH3)2CH, (CH3)3C). Chem Phys Lett, 2004, 390(4–6): 362–369

    Article  CAS  Google Scholar 

  84. Zeng Y L, Meng L P, Zheng S J, Wang D X. A DFT study of the generation of interstellar species XN (X = Cl, and Br) activated by molecular sieve clusters. Chem Phys Lett, 2004, 400(4–6): 394–400

    Article  CAS  Google Scholar 

  85. Salisbury G, Rickard A R, Monks P S, Allan B J, Bauguitte S, Penkette S A, Carslaw N, Lewis A C, Creasey D J, Heard D E, Jacobs J, Lee J D. Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer. J Geophys Res, 2001, 106(D12): 12669–12687

    Article  CAS  Google Scholar 

  86. Heryadi D, Yeager D L. Resolving the controversy over the second ionization potential of the nitrate free radical NO3. J Chem Phys, 2000, 112(10): 4572–4578

    Article  CAS  Google Scholar 

  87. Monks P S, Stief L J, Krauss M, Kuo S C, Zhang Z, Klemm R B. A discharge flow-photoionization mass spectrometric study of the NO3(2A′2) radical: Photoionization spectrum, adiabatic ionization energy, and ground state symmetry. J Phys Chem, 1994, 98(40): 10017–10022

    Article  CAS  Google Scholar 

  88. Wang D X, Jiang P, Qian X M, Hong G Y. A study of HeI photoelectron spectroscopy on the electronic structure of the nitrate free radical NO3. J Chem Phys, 1997, 106(8): 3003–3006

    Article  CAS  Google Scholar 

  89. Crawford M J, Klapötke T M, Klufers P, Mayer P, White P S. CS2N3, a novel pseudohalogen. J Am Chem Soc, 2000, 122(37): 9052–9053

    Article  CAS  Google Scholar 

  90. Tornieporth-Oetting I C, Klapötke T M. Covalent inorganic azides. Angew Chem Int Ed, 1995, 34(5): 511–520

    Article  CAS  Google Scholar 

  91. Knapp C, Passmore J. On the way to “solid nitrogen” at normal temperature and pressure? Binary azides of heavier group 15 and 16 elements. Angew Chem Int Ed, 2004, 43(37): 4834–4836

    Article  CAS  Google Scholar 

  92. Klapötke T M. Recent developments in the chemistry of covalent azides. Chem Ber, 1997, 130(4): 443–452

    Google Scholar 

  93. Zeng Y L, Meng L P, Zheng S J, Wang D X. B3LYP calculations of the potential energy surfaces of the thermal dissociations and the triplet ground state of pyrolysis products XN (χ3Σ) for halogen azides XN3 (X: F, Cl, Br, I). Chem Phys Lett, 2003, 378(1–2): 128–134

    Article  CAS  Google Scholar 

  94. Che H J, Bi H M, Zeng Y L, Meng L P, Zheng S J, Wang D X. Vacuum preparation and ionization energies of FN3 and IN3. ChemPhysChem, 2003, 4(3): 300–303

    Article  CAS  Google Scholar 

  95. Schulz A, Tornieporth-Oetting I C, Klapötke T M. Nitrosyl azide, N4O, an intrinsically unstable oxide of nitrogen. Angew Chem Int Ed, 1993, 32(11): 1610–1612

    Article  Google Scholar 

  96. Galbraith J M, Schaefer III H F. The nitrosyl azide potential energy surface: A high-energy-density boom or bust? J Am Chem Soc, 1996, 118(20): 4860–4870

    Article  CAS  Google Scholar 

  97. Doyle M P, Maciejko J J, Bushman S C. Reaction between azide and nitronium ions. Formation and decomposition of nitryl azide. J Am Chem Soc, 1973, 95(3): 952–953

    Article  CAS  Google Scholar 

  98. Klapötke T M, Schulz A, Tornieporth-Oetting I C. Studies of the reaction of nitryl compounds towards azides-evidence for tetranitrogen dioxide, N4O2. Chem Ber, 1994, 127(11): 2181–2185

    Google Scholar 

  99. Zeng X Q, Ge M F, Sun Z, Wang D X. Gaseous nitryl azide N4O2: A joint theoretical and experimental study. J Mol Struct. 2007 (in press).

  100. Liu F Y, Zeng X Q, Sun Q, Meng L P, Zheng S J, Ai X C, Zhang J P, Ge M F, Wang D X. Reaction of (COCl)2 with AgN3: Evidence for the formation of oxalyl diazide O2C2(N3)2. Bull Chem Soc Jpn, 2005, 78(7): 1246–1250

    Article  CAS  Google Scholar 

  101. Zeng X Q, Liu F Y, Sun Q, Ge M F, Zhang J P, Ai X C, Meng L P, Zheng S J, Wang D X. Reaction of AgN3 with SOCl2: Evidence for the formation of thionyl azide, SO(N3)2. Inorg Chem, 2004, 43(16): 4799–4801

    Article  CAS  Google Scholar 

  102. Liu F Y, Zeng X Q, Zhang J P, Meng L P, Zheng S J, Ge M F, Wang D X, Mok D K, Chau F T. A simple method to generate B(N3)3. Chem Phys Lett, 2006, 419(1–3): 213–216

    Article  CAS  Google Scholar 

  103. Zeng X Q, Wang W G, Liu F Y, Ge M F, Sun Z, Wang D X. Electronic structure of binary phosphoric and arsenic triazides. Eur J Inorg Chem, 2006, 2006(2): 416–421

    Article  CAS  Google Scholar 

  104. Haiges R, Vij A, Boatz J A, Schneider S, Schroer T, Gerken M, Christe K O. First structural characterization of binary AsIII and SbIII azides. Chem Eur J, 2004, 10(2): 508–517

    Article  CAS  Google Scholar 

  105. Zeng X Q, Ge M F, Sun Z, Wang D X. Nitrosyl isocyanate (ONNCO): Gas-phase generation and a HeI photoelectron spectroscopy study. Inorg Chem, 2005, 44(25): 9283–9287

    Article  CAS  Google Scholar 

  106. Wang W G, Ge M F, Yao L, Zeng X Q, Sun Z, Wang D X. Gas-Phase spectroscopy of the unstable sulfur diisocyanate molecule S(NCO)2. ChemPhysChem, 2006, 7(6): 1382–1387

    Article  CAS  Google Scholar 

  107. Wang W G, Yao L, Zeng X Q, Ge M F, Sun Z, Wang D X, Ding Y H. Evidence of the formation and conversion of unstable thionyl isocyanate: Gas-phase spectroscopic studies. J Chem Phys, 2006, 125(23): 234303-1–234303-6

    Google Scholar 

  108. Yao L, Wang W G, Zeng X Q, Ge M F, Du L, Sun Z, Wang D X, Liang F, Qu H B, Li H Y. An ultraviolet photoelectron spectrometer-time of flight mass spectrometer for in-situ study of transient species and radicals (in Chinese). Anal Instrum, 2006, 1: 1–5

    Google Scholar 

  109. Klapötke T M, Schulz A. Reaction of AgOCN with NO, NO2, ClNO2, ClNO, and BrNO: Evidence of the formation of OCN-NO2 and OCN-NO. Inorg Chem, 1996, 35(26): 7897–7904

    Article  Google Scholar 

  110. Li Y M, Qiao Z M, Sun Q, Zhao J C, Li H Y, Wang D X. Preparations of pure ISeCN, ISCN, and INCO. Inorg Chem, 2003, 42(25): 8446–8448

    Article  CAS  Google Scholar 

  111. Zeng X Q, Yao L, Ge M F, Wang D X. Experimental and theoretical studies on the electronic properties of acetyl pseudohalides CH3C(O)X (X = NCO, NCS and N3). J Mol Struct, 2006, 789(1–3): 92–99

    Article  CAS  Google Scholar 

  112. Yao L, Zeng X Q, Ge M F, Wang W G, Sun Z, Du L, Wang D X. First experimental observation of gas-phase nitrosyl thiocyanate. Eur J Inorg Chem, 2006, 2006(12): 2469–2475

    Article  CAS  Google Scholar 

  113. Yao L, Ge M F, Wang W G, Zeng X Q, Sun Z, Wang D X. Gas-phase generation and electronic structure investigation of chlorosulfanyl thiocyanate, ClSSCN. Inorg Chem, 2006, 45(15): 5971–5975

    Article  CAS  Google Scholar 

  114. Pasinszki T, Westwood N P C. Open-chain and ring isomers of CN2OS-Ab initio study of structures and stabilities. J Chem Soc Faraday Trans, 1996, 92(3): 333–341

    Article  CAS  Google Scholar 

  115. Liu F Y, Zeng X Q, Wang W G, Meng L P, Zheng S J, Ge M F, Wang D X. Photoelectron spectra and electronic structures of some chlorosulfonyl pseudohalides. Spectrochimica Acta Part A, 2006, 64(1): 111–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang DianXun.

Additional information

Recommended by Prof. Xu Guangxian, Editor in Chief of Science in China, Series B: Chemistry, this review briefly introduces Prof. Wang Dianxun’s research achievements, which won the National Natural Science Award in 2006

Supported by the National Natural Science Foundation of China (Grant Nos. 2880168, 27170306, 49392703, 29673049, 29973051, 20073052, 50372071, 20473094, 20477047, 20577052 and 20673123), the Chinese Academy of Sciences (Hundred Talents Fund) and Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-H2, KJCX2-SW-H8 and KZCX2-YW-205), and 973 Program, Ministry of Science and Technology of China (Grant No. 2006CB403701)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Wang, D. Novel gaseous transient species: Generation and characterization. SCI CHINA SER B 50, 145–169 (2007). https://doi.org/10.1007/s11426-007-0020-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0020-1

Keywords

Navigation