Skip to main content
Log in

In-situ synthesis of nanoparticles via supersolubilizing micelle self-assembly

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

In-situ synthesis of nano-particles using the self-assembly of molten salt and super soluble micellae was proposed based on a phenomenon of super solubilization of molten salt in reverse micellae and its self-assembly when the concentration reached up to 95% (w/w). The mechanism of the self-assembly indicates that the self-assembly of molten salt occurs in a reverse micelle where a homogenous phase is established between 5% (w/w) of a surfactant with a VB value of less than 1 and a hydrocarbon species. This synthesis has some unique features, such as being free of water, highly effective deposition and narrow distribution of particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lisiecki I, Billoudet F, Pileni M P. Control of the shape and size of copper metallic particles. J Phys Chem-US, 1996, 100(10): 4160–4166

    Article  CAS  Google Scholar 

  2. Moumen N, Pilieni M P. Control of the size of cobalt ferrite magnetic fluid. J Phys Chem-US, 1996, 100(5): 1867–1873

    Article  CAS  Google Scholar 

  3. Pileni M P. Reverse micelles as microreactors. J Phys Chem-US, 1993, 97(27): 6961–6973

    Article  CAS  Google Scholar 

  4. Tanori J, Gulik-Kraywicki T, Pilieni M P. Phase diagram of Copper(II) bis(2-ethylhexyl) sulfosuccinate, Cu(AOT)2-isooctane-water. Langmuir, 1997, 13(4): 632–638

    Article  CAS  Google Scholar 

  5. Tanori J, Pilieni M P. Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir, 1997, 13(4): 639–646

    Article  CAS  Google Scholar 

  6. Horvath O, Fendler J H. CdS-particle-mediated transmembrance photoelectron transter in surfactant vesicles. J Phys Chem-US, 1992, 96(24): 9591–9594

    Article  CAS  Google Scholar 

  7. Wang J Y, Uphaus R A, Ameenuddin S, et al. Formation of nanoscale size cadmium sulfide within a channel protein monolayer. Thin Solid Films, 1994, 242(1–2): 127–131

    Article  CAS  Google Scholar 

  8. Fendler J H. Membrane Mimetic Approach to Advanced Materials. Berlin: Springer-Verlag, 1992

    Google Scholar 

  9. Urquart R S, Furlong D N, Mansur H, et al. Quartz crystal microbalance and UV-Vis absorption study of Q-state CdS particle formation in cadmium aracchidate Langmuir-Blodgett films. Langmuir, 1994, 10(3): 899–904

    Article  Google Scholar 

  10. Moriguchi I, Hosoi K, Nagaoka H, et al. Stepwise growth of size-confined CdS in the two-dimensional hydrophilic interlayers of Langmuir-Blodgett films by the repeated sulfidation-interaction technique. J Chem Soc Faraday T, 1994, 90(2): 349–354

    Article  Google Scholar 

  11. Tian Y C, Wu C J, Fenlder J H. Fluorescence activation and surface-state reactions of size-quantized Cadmium sulfide particles in Langmuir-Blodgett films. J Phys Chem-US, 1994, 98(18): 4913–4918

    Article  CAS  Google Scholar 

  12. Herron N, Wang Y, Eddy M, et al. Structure and optical properties of CdS superclusters in zeolite hosts. J Am Chem Soc, 1989, 111(2): 530–540

    Article  CAS  Google Scholar 

  13. Boutonnet M, Kizling J, Maire P S. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf, 1982, 5(3): 209–225

    Article  CAS  Google Scholar 

  14. Jacobsted C J H, Madsen C, Janssens T V W, et al. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and Al/Si-MAS NMR spectroscopy. Micropor Mesopor Mat, 2000, 39(2): 393–401

    Article  Google Scholar 

  15. Israelachvili J N. Intermolecular and Surface Forces. 2nd ed. San Diego: Academic Press, 1992. 366–394

    Google Scholar 

  16. Wang D C. A novel idea on high interior phase emulsion. In: Huang Ping, Li Shengcai, Wang Yajun, eds. Theory and Practice of Energetic Materials. Beijing: Science Press, 2003. 91–95

    Google Scholar 

  17. Wang D C. A preparation method of nano composite oxide. CN200510046480.6, 2005-05-18

  18. Wang D C. A study of identifying the emulsion type of surfactant: volume balance value. J Colloid Interf Sci, 2002, 247(2): 389–396

    Article  CAS  Google Scholar 

  19. Chai L H, Peng X F. Challenge from frontier in chemistry: Dynamic self-assembly. Prog Chem, 2004, 16(2): 169–173

    CAS  Google Scholar 

  20. Kresge C T, Leonowicz M E, Roth W J, et al. Order mesporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710–712

    Article  CAS  Google Scholar 

  21. Wang D C. A preparation method of slow released fertilizer. CN 1120144C, 2003-09-03

  22. Wang D C. A preparation method of nano super paramagnetism material. CN 200510046479.3, 2005-05-18

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D. In-situ synthesis of nanoparticles via supersolubilizing micelle self-assembly. SCI CHINA SER B 50, 105–113 (2007). https://doi.org/10.1007/s11426-007-0007-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-007-0007-y

Keywords

Navigation