Skip to main content
Log in

Wick’s theorem and reconstruction schemes for reduced density matrices

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

We first obtained a closed form of the Wick’s theorem expressed in Grassman wedge product, which is similar to a binomial expansion. With this new expansion, new reconstruction schemes for reduced density matrices are derived rigorously. The higher order reduced density matrices are systematically decomposed into a sum of the lower order reduced density matrices which could be used to solve the contracted Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson E R. Reduced Density Matrices in Quantum Chemistry. New York: Academic, 1976

    Google Scholar 

  2. Cioslowski J, ed. Many-Electron Densities and Reduced Density Matrices. Boston: Kluwer, 2000

    Google Scholar 

  3. Coleman A J. Structure of Fermion density matrices. Rev Mod Phys, 1963, 35: 668–687

    Article  Google Scholar 

  4. Sasaki F. Eigenvalues of Fermion density matrices. Phys Rev, 1965, 138: 1338–1342

    Article  CAS  Google Scholar 

  5. Weinhold F, Wilson E B. Reduced density matrices of atoms and molecules (II): On the N-representability problem. J Chem Phys, 1967, 47: 2298–2311

    Article  CAS  Google Scholar 

  6. Kummer H. N-representability problem for reduced density matrices. J Math Phys, 1967, 8: 2063–2081

    Article  Google Scholar 

  7. Davidson E R. Linear inequality for density matrices. J Math Phys, 1969, 10: 725–734

    Article  Google Scholar 

  8. McRae W B, Davidson E R. Linear inequality for density matrices (II). J Math Phys, 1972, 13: 1527–1538

    Article  Google Scholar 

  9. McRae W B, Davidso E R. An algorithm for the extreme rays of a pointed convex polyhedral cone. SIAM J Comput, 1973, 2: 281–293

    Article  Google Scholar 

  10. Yoseloff M L, Kuhn H W. Combinatorial approach to the N-representability of p-density matrices. J Math Phys, 1969, 10: 703–706

    Article  Google Scholar 

  11. Beste A, Runge K, Bartlett R. Ensuring N-representability: Coleman’s algorithm. Chem Phys Lett, 2002, 355: 263–269

    Article  CAS  Google Scholar 

  12. Cho S. Sci Rep Gumma Univ, 1962, 11: 1

    Google Scholar 

  13. Nakatsuji H. Equation for the direct determination of density matrix. Phys Rev A, 1976, 14: 41–50

    Article  CAS  Google Scholar 

  14. Cohen L, Frishberg C. Hierarchy equations for the density matrices. Phys Rev A, 1976, 13: 927–930

    Article  Google Scholar 

  15. Valdemore C. Approximating the second-order density matrix in terms of first-order one. Phys Rev A, 1992, 45: 4462–4467

    Article  Google Scholar 

  16. Colmenero F, Pérez del Valle C, Valdemore C. Approximating the q-order density matrix in terms of lower-order ones (I): General relations. Phys Rev A, 1993, 47: 971–978

    Article  CAS  Google Scholar 

  17. Colmenero F, Valdemore C. Approximating the q-order density matrix in terms of lower-order ones (II): Applications. Phys Rev A, 1993, 47: 979–985

    Article  CAS  Google Scholar 

  18. Nakatsuji H, Yasuda K. Direct determination of the quantum-mechanical density matrix using the density equation. Phys Rev Lett, 1996, 76: 1039–1042

    Article  CAS  Google Scholar 

  19. Yasuda K, Nakatsuji H. Direct determination of the quantum-mechanical density matrix using the density equation (II). Phys Rev A, 1997, 56: 2648–2657

    Article  CAS  Google Scholar 

  20. Mazziotti D A. Contracted Schrödinger equation: Determing quantum energies and two particle density matrices without wave functions. Phys Rev A, 1998, 57: 4219–4234

    Article  CAS  Google Scholar 

  21. Mazziotti D A. Approximate solution for electron correlation through the use of Schwinger Prober. Chem Phys Lett, 1998, 289: 419–427

    Article  CAS  Google Scholar 

  22. Kubo R. Generalized cumulant expansion method. J Phys Soc Jpn, 1962, 17: 1100–1120

    Article  Google Scholar 

  23. Wick G C. The valuation of the collision matrix. Phys Rev, 1950, 80: 268–272

    Article  Google Scholar 

  24. March N H, Young W H, Sampanthar S. The Many Body Problem in Quantum Mechanics. London and New York: Cambridge University Press, 1967

    Google Scholar 

  25. Coleman A J, Absar I. Reduced Hamiltonian orbitals (III): Unitarily invariant decomposition of Hermitian operators. Int J Quantum Chem, 1980, 18: 1279–1307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F. Wick’s theorem and reconstruction schemes for reduced density matrices. SCI CHINA SER B 49, 402–406 (2006). https://doi.org/10.1007/s11426-006-0402-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-006-0402-9

Keywords

Navigation