Skip to main content
Log in

Existence and asymptotics of normalized solutions for the logarithmic Schrödinger system

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the following logarithmic Schrödinger system

$$\left\{ {\matrix{{ - \Delta {u_1} + {\omega _1}{u_1} = {\mu _1}{u_1}\log \,u_1^2 + {{2p} \over {p + q}}|{u_2}{|^q}|{u_1}{|^{p - 2}}{u_1},} \hfill \cr { - \Delta {u_2} + {\omega _2}{u_2} = {\mu _2}{u_2}\log \,u_2^2 + {{2q} \over {p + q}}|{u_1}{|^p}|{u_2}{|^{q - 2}}{u_2},} \hfill \cr {\int_\Omega {|{u_i}{|^2}dx = {\rho _i},\,\,\,\,\,i = 1,2,} } \hfill \cr {({u_1},{u_2}) \in H_0^1(\Omega ;{\mathbb{R}^2}),} \hfill \cr } } \right.$$

where Ω = ℝN or Ω ⊂ ℝN (N ⩾ 3) is a bounded smooth domain, and ωi ∈ ℝ, μi, ρi > 0 for i = 1, 2. Moreover, p,q ⩾ 1, and 2 ⩽ p + q ⩽ 2*, where \({2^ * }: = {{2N} \over {N - 2}}\). By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u2, firstly, we provide a unified proof of the existence of the normalized ground state solution for all 2 ⩽ p + q ⩽ 2*. Secondly, we consider the stability of normalized ground state solutions. Finally, we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p + q approaches 2*. Notably, the uncertainty of the sign of u log u2 in (0, +∞) is one of the difficulties of this paper, and also one of the motivations we are interested in. In particular, we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations (i.e., p + q = 2*). In addition, our study includes proving the existence of solutions to the logarithmic type Brézis-Nirenberg problem with and without the L2-mass constraint Ωui2dx = ρi (i = 1, 2) by two different methods, respectively. Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrödinger system with logarithmic perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfaro M, Carles R. Superexponential growth or decay in the heat equation with a logarithmic nonlinearity. Dyn Partial Differ Equ, 2017, 14: 343–358

    Article  MathSciNet  Google Scholar 

  2. Alves C, de Morais Filho D, Souto M. On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal, 2000, 42: 771–787

    Article  MathSciNet  Google Scholar 

  3. Ardila A. Orbital stability of Gausson solutions to logarithmic Schrödinger equations. Electron J Differential Equations, 2016, 335: 1–9

    MathSciNet  Google Scholar 

  4. Badiale M, Serra E. Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach. London: Springer, 2011

    Book  Google Scholar 

  5. Bartsch T, Jeanjean L, Soave N. Normalized solutions for a system of coupled cubic Schrödinger equations on ℝ3. J Math Pures Appl (9), 2016, 106: 583–614

    Article  MathSciNet  Google Scholar 

  6. Bartsch T, Soave N. A natural constraint approach to normalized solutions of nonlinear Schröodinger equations and systems. J Funct Anal, 2017, 272: 4998–5037

    Article  MathSciNet  Google Scholar 

  7. Bartsch T, Zhong X, Zou W. Normalized solutions for a coupled Schrödinger system. Math Ann, 2021, 380: 1713–1740

    Article  MathSciNet  Google Scholar 

  8. Bellazzini J, Boussaïd N, Jeanjean L, et al. Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm Math Phys, 2017, 353: 229–251

    Article  MathSciNet  Google Scholar 

  9. Bialynicki-Birula I, Mycielski J. Wave equations with logarithmic nonlinearities. Bull Acad Polon Sci Sér Sci Math Astronom Phys, 1975, 23: 461–466

    MathSciNet  Google Scholar 

  10. Bialynicki-Birula I, Mycielski J. Nonlinear wave mechanics. Ann Physics, 1976, 100: 62–93

    Article  MathSciNet  Google Scholar 

  11. Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486–490

    Article  MathSciNet  Google Scholar 

  12. Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477

    Article  MathSciNet  Google Scholar 

  13. Carles R, Gallagher I. Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math J, 2018, 167: 1761–1801

    Article  MathSciNet  Google Scholar 

  14. Carles R, Pelinovsky D. On the orbital stability of Gaussian solitary waves in the log-KdV equation. Nonlinearity, 2014, 27: 3185–3202

    Article  MathSciNet  Google Scholar 

  15. Cazenave T. Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal, 1983, 7: 1127–1140

    Article  MathSciNet  Google Scholar 

  16. Chen J, Zhang Q. Ground state solution of Nehari-Pohožaev type for periodic quasilinear Schrödinger system. J Math Phys, 2020, 61: 101510

    Article  MathSciNet  Google Scholar 

  17. Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation: A dual approach. Nonlinear Anal, 2004, 56: 213–226

    Article  MathSciNet  Google Scholar 

  18. d’Avenia P, Montefusco E, Squassina M. On the logarithmic Schrödinger equation. Commun Contemp Math, 2014, 16: 1350032

    Article  MathSciNet  Google Scholar 

  19. Deng Y, He Q, Pan Y, et al. The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation. Adv Nonlinear Stud, 2023, 23: 20220049

    Article  MathSciNet  Google Scholar 

  20. Deng Y, Pi H, Shuai W. Multiple solutions for logarithmic Schrödinger equations with critical growth. Methods Appl Anal, 2021, 28: 221–248

    Article  MathSciNet  Google Scholar 

  21. Gou T, Jeanjean L. Multiple positive normalized solutions for nonlinear Schröodinger systems. Nonlinearity, 2018, 31: 2319–2345

    Article  MathSciNet  Google Scholar 

  22. Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28: 1633–1659

    Article  MathSciNet  Google Scholar 

  23. Jeanjean L, Lu S. Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schröodinger equation. Math Models Methods Appl Sci, 2022, 32: 1557–1588

    Article  MathSciNet  Google Scholar 

  24. Lieb E, Loss M. Analysis, 2nd ed. Graduate Studies in Mathematics, vol. 14. Providence: Amer Math Soc, 2001

    Google Scholar 

  25. Liu J, Wang Y, Wang Z. Solutions for quasilinear Schröodinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29: 879–901

    Article  MathSciNet  Google Scholar 

  26. Molle R, Riey G, Verzini G. Normalized solutions to mass supercritical Schröodinger equations with negative potential. J Differential Equations, 2022, 333: 302–331

    Article  MathSciNet  Google Scholar 

  27. Noris B, Tavares H, Verzini G. Existence and orbital stability of the ground states with prescribed mass for the L2-critical and supercritical NLS on bounded domains. Anal PDE, 2014, 7: 1807–1838

    Article  MathSciNet  Google Scholar 

  28. Noris B, Tavares H, Verzini G. Stable solitary waves with prescribed L2-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin Dyn Syst, 2015, 35: 6085–6112

    Article  MathSciNet  Google Scholar 

  29. Noris B, Tavares H, Verzini G. Normalized solutions for nonlinear Schroödinger systems on bounded domains. Nonlinearity, 2019, 32: 1044–1072

    Article  MathSciNet  Google Scholar 

  30. Pierotti D, Verzini G. Normalized bound states for the nonlinear Schröodinger equation in bounded domains. Calc Var Partial Differential Equations, 2017, 56: 133

    Article  Google Scholar 

  31. Poppenberg M, Schmitt K, Wang Z-Q. On the existence of soliton solutions to quasilinear Schröodinger equations. Calc Var Partial Differential Equations, 2002, 14: 329–344

    Article  MathSciNet  Google Scholar 

  32. Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 49: 897–923

    Article  MathSciNet  Google Scholar 

  33. Shuai W. Multiple solutions for logarithmic Schröodinger equations. Nonlinearity, 2019, 32: 2201–2225

    Article  MathSciNet  Google Scholar 

  34. Squassina M, Szulkin A. Multiple solutions to logarithmic Schröodinger equations with periodic potential. Calc Var Partial Differential Equations, 2015, 54: 585–597

    Article  MathSciNet  Google Scholar 

  35. Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Berlin: Springer, 1990

    Book  Google Scholar 

  36. Vázquez J. A strong maximum principle for some quasilinear elliptic equations. Appl Math Optim, 1984, 12: 191–202

    Article  MathSciNet  Google Scholar 

  37. Wang Z-Q, Zhang C. Convergence from power-law to logarithm-law in nonlinear scalar field equations. Arch Ration Mech Anal, 2019, 231: 45–61

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their careful reading and for their very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zou, W. Existence and asymptotics of normalized solutions for the logarithmic Schrödinger system. Sci. China Math. (2024). https://doi.org/10.1007/s11425-022-2172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11425-022-2172-x

Keywords

MSC(2020)

Navigation