Skip to main content
Log in

Improved error estimates for a modified exponential Euler method for the semilinear stochastic heat equation with rough initial data

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

A class of stochastic Besov spaces \({B^p}{L^2}({\rm{\Omega}};{\dot{H}^\alpha}({\cal O}))\), 1 ⩽ p ⩽ ∞ and α ∈ [−2, 2], is introduced to characterize the regularity of the noise in the semilinear stochastic heat equation

$$du - \Delta udt = f(u)dt + dW(t),$$

under the following conditions for some α ∈ (0,1]

$${\left\| {\int_0^t {{{\rm{e}}^{- (t - s)A}}} dW(s)} \right\|_{{L^2}(\Omega;{L^2}({\cal O}))}} \leqslant C{t^{{\alpha \over 2}}}\,\,\,\,\,{\rm{and}}\,\,\,\,\,{\left\| {\int_0^t {{{\rm{e}}^{- (t - s)A}}} dW(s)} \right\|_{{B^\infty}{L^2}(\Omega;{{\dot H}^\alpha}({\cal O}))}} \leqslant \,C.$$

The conditions above are shown to be satisfied by both trace-class noises (with α =1) and one-dimensional space-time white noises (with \(\alpha = {1 \over 2}\)). The latter would fail to satisfy the conditions with \(\alpha = {1 \over 2}\) if the stochastic Besov norm \({\left\| {\, \cdot \,} \right\|_{{B^\infty}{L^2}(\Omega;{{\dot H}^\alpha}({\cal O}))}}\) is replaced by the classical Sobolev norm \({\left\| {\, \cdot \,} \right\|_{{L^2}(\Omega;{{\dot H}^\alpha}({\cal O}))}}\), and this often causes reduction of the convergence order in the numerical analysis of the semilinear stochastic heat equation. In this paper, the convergence of a modified exponential Euler method, with a spectral method for spatial discretization, is proved to have order αin both the time and space for possibly nonsmooth initial data in \({L^4}(\Omega;{{\dot H}^\beta}({\cal O}))\) with β > −1, by utilizing the real interpolation properties of the stochastic Besov spaces and a class of locally refined stepsizes to resolve the singularity of the solution at t =0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anton R, Cohen D, Larsson S, et al. Full discretization of semilinear stochastic wave equations driven by multiplicative noise. SIAM J Numer Anal, 2016, 54: 1093–1119

    Article  MathSciNet  Google Scholar 

  2. Anton R, Cohen D, Quer-Sardanyons L. A fully discrete approximation of the one-dimensional stochastic heat equation. IMA J Numer Anal, 2020, 40: 247–284

    Article  MathSciNet  Google Scholar 

  3. Banjai L, Lord G, Molla J. Strong convergence of a Verlet integrator for the semilinear stochastic wave equation. SIAM J Numer Anal, 2021, 59: 1976–2003

    Article  MathSciNet  Google Scholar 

  4. Bennett C, Sharpley R. Interpolation of Operators. Boston: Academic Press, 1988

    Google Scholar 

  5. Bergh J, Löfström J. Interpolation Spaces. An Introduction. Berlin-New York: Springer-Verlag, 1976

    Book  Google Scholar 

  6. Brehier C E, Cui J, Hong J. Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation. IMA J Numer Anal, 2019, 39: 2096–2134

    Article  MathSciNet  Google Scholar 

  7. Cao Y, Hong J, Liu Z. Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion. IMA J Numer Anal, 2018, 38: 184–197

    Article  MathSciNet  Google Scholar 

  8. Cao Y, Yin L. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Commun Pure Appl Anal, 2007, 6: 607–617

    Article  MathSciNet  Google Scholar 

  9. Cohen D, Lang A. Numerical approximation and simulation of the stochastic wave equation on the sphere. Calcolo, 2022, 59: 32

    Article  MathSciNet  Google Scholar 

  10. Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge Univ Press, 1992

    Book  Google Scholar 

  11. Evans L C. Partial Differential Equations, 2nd ed. Providence: Amer Math Soc, 2010

    Google Scholar 

  12. Gyongy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by spacetime white noise. I. Potential Anal, 1998, 9: 1–25

    Article  MathSciNet  Google Scholar 

  13. Gyongy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by spacetime white noise. II. Potential Anal, 1999, 11: 1–37

    Article  MathSciNet  Google Scholar 

  14. Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin-New York: Springer-Verlag, 1981

    Book  Google Scholar 

  15. Higham D J, Kloeden P E. An Introduction to the Numerical Simulation of Stochastic Differential Equations. Philadelphia: SIAM, 2021

    Book  Google Scholar 

  16. Higham D J, Mao X, Stuart A M. Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J Numer Anal, 2002, 40: 1041–1063

    Article  MathSciNet  Google Scholar 

  17. Hutzenthaler M, Jentzen A. Convergence of the stochastic Euler scheme for locally Lipschitz coefficients. Found Comput Math, 2011, 11: 657–706

    Article  MathSciNet  Google Scholar 

  18. Hutzenthaler M, Jentzen A. On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. Ann Probab, 2020, 48: 53–93

    Article  MathSciNet  Google Scholar 

  19. Hutzenthaler M, Jentzen A, Kloeden P E. Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann Appl Probab, 2012, 22: 1611–1641

    Article  MathSciNet  Google Scholar 

  20. Jentzen A, Kloeden P E. Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc Roy Soc A Math Phys Eng Sci, 2009, 465: 649–667

    MathSciNet  Google Scholar 

  21. Kovács M, Larsson S, Saedpanah F. Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J Numer Anal, 2010, 48: 408–427

    Article  MathSciNet  Google Scholar 

  22. Kress R. Linear Integral Equations, 3rd ed. New York: Springer, 2014

    Book  Google Scholar 

  23. Kruse R. Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Cham: Springer, 2014

    Book  Google Scholar 

  24. Lang A, Petersson A, Thalhammer A. Mean-square stability analysis of approximations of stochastic differential equations in infinite dimensions. BIT, 2017, 57: 963–990

    Article  MathSciNet  Google Scholar 

  25. Li B, Ma S. A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J Sci Comput, 2021, 87: 23

    Article  MathSciNet  Google Scholar 

  26. Lord G J, Powell C E, Shardlow T. An Introduction to Computational Stochastic PDEs. New York: Cambridge Univ Press, 2014

    Book  Google Scholar 

  27. Malliavin P. Integration and Probability. New York: Springer-Verlag, 1995

    Book  Google Scholar 

  28. McLean W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge Univ Press, 2000

    Google Scholar 

  29. Mukam J D, Tambue A. Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Appl Numer Math, 2020, 147: 222–253

    Article  MathSciNet  Google Scholar 

  30. Mukam J D, Tambue A. Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise. Stochastic Process Appl, 2020, 130: 4968–5005

    Article  MathSciNet  Google Scholar 

  31. Prévôt C, Röckner M. A Concise Course on Stochastic Partial Differential Equations. Berlin: Springer, 2007

    Google Scholar 

  32. Qi R, Wang X. Error estimates of finite element method for semilinear stochastic strongly damped wave equation. IMA J Numer Anal, 2019, 39: 1594–1626

    Article  MathSciNet  Google Scholar 

  33. Stein E M, Shakarchi R. Functional Analysis. Princeton: Princeton Univ Press, 2011

    Book  Google Scholar 

  34. Wang X. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete Contin Dyn Syst, 2016, 36: 481–497

    Article  MathSciNet  Google Scholar 

  35. Wang X. Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise. IMA J Numer Anal, 2017, 37: 965–984

    MathSciNet  Google Scholar 

  36. Wang X. An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-Cahn equation. Stochastic Process Appl, 2020, 130: 6271–6299

    Article  MathSciNet  Google Scholar 

  37. Wang X, Gan S, Tang J. Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise. SIAM J Sci Comput, 2014, 36: A2611–A2632

    Article  MathSciNet  Google Scholar 

  38. Wang X, Qi R. A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise. Appl Math Lett, 2015, 46: 31–37

    Article  MathSciNet  Google Scholar 

  39. Yan Y. Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J Numer Anal, 2005, 43: 1363–1384

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12071020, 12131005 and U2230402), the Research Grants Council of Hong Kong (Grant No. PolyU15300519), and an Internal Grant of The Hong Kong Polytechnic University (Grant No. P0038843, Work Programme: ZVX7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, X., Li, B. & Wang, J. Improved error estimates for a modified exponential Euler method for the semilinear stochastic heat equation with rough initial data. Sci. China Math. (2024). https://doi.org/10.1007/s11425-022-2157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11425-022-2157-2

Keywords

MSC(2020)

Navigation