Skip to main content
Log in

Localization of normalized solutions for saturable nonlinear Schrödinger equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and concentration behavior of the semiclassical states with L2-constraints for the following saturable nonlinear Schrödinger equation:

$$-\varepsilon^{2}\Delta v+\Gamma{{I(x)+v^{2}}\over{1+I(x)+v^{2}}}v=\lambda v\;\;\;\;\;\text{for}\;x\in\mathbb{R}^{2}.$$

For a negatively large coupling constant Γ, we show that there exists a family of normalized positive solutions (i.e., with the L2-constraint) when ε is small, which concentrate around local maxima of the intensity function I(x) as ε → 0. We also consider the case where I(x) may tend to —1 at infinity and the existence of multiple solutions. The proof of our results is variational and the novelty of the work lies in the development of a new truncation-type method for the construction of the desired solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J Eur Math Soc (JEMS), 2005, 7: 117–144

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A, Malchiodi A. Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge: Cambridge University Press, 2007

    Book  MATH  Google Scholar 

  3. Berestycki H, Lions P L. Nonlinear scalar field equaitons, I: Existence of a ground state. Arch Ration Mech Anal, 1983, 82: 313–345

    Article  MATH  Google Scholar 

  4. Byeon J, Wang Z-Q. Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch Ration Mech Anal, 2002, 165: 295–316

    Article  MathSciNet  MATH  Google Scholar 

  5. Byeon J, Wang Z-Q. Standing waves for nonlinear Schrödinger equations with singular potentials. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 943–958

    Article  MathSciNet  MATH  Google Scholar 

  6. Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm Math Phys, 1982, 85: 549–561

    Article  MathSciNet  MATH  Google Scholar 

  7. Cerami G, Devillanova G, Solimini S. Infinitely many bound states for some nonlinear scalar field equations. Calc Var Partial Differential Equations, 2005, 23: 139–168

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen S W, Wang Z-Q. Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc Var Partial Differential Equations, 2017, 56: 1

    Article  MATH  Google Scholar 

  9. Cid C, Felmer P. Orbital stability and standing waves for the nonlinear Schrödinger equation with potential. Rev Math Phys, 2001, 13: 1529–1546

    Article  MathSciNet  MATH  Google Scholar 

  10. Dautray R, Lions J L. Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3. Berlin: Springer, 1990

    MATH  Google Scholar 

  11. del Pino M, Felmer P L. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc Var Partial Differential Equations, 1996, 4: 121–137

    Article  MathSciNet  MATH  Google Scholar 

  12. del Pino M, Felmer P L. Semi-classical states for nonlinear Schrödinger equations. J Funct Anal, 1997, 149: 245–265

    Article  MathSciNet  MATH  Google Scholar 

  13. del Pino M, Felmer P L. Semi-classical states of nonlinear Schrödinger equations: A variational reduction method. Math Ann, 2002, 324: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  14. Efremidis N K, Hudock J, Christodoulides D N, et al. Two-dimensional optical lattice solitons. Phys Rev Lett, 2003, 91: 213906

    Article  Google Scholar 

  15. Efremidis N K, Sears S, Christodoulides D N, et al. Discrete solitons in photorefractive optically induced photonic lattices. Phys Rev E, 2002, 66: 046602

    Article  Google Scholar 

  16. Floer A, Weinstein A. Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J Funct Anal, 1986, 69: 397–408

    Article  MathSciNet  MATH  Google Scholar 

  17. Gatz S, Herrmann J. Propagation of optical beams and the properties of two-dimensional spatial solitons in media with a local saturable nonlinear refractive index. J Opt Soc Am B, 1997, 14: 1795–1806

    Article  Google Scholar 

  18. Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Berlin-Heidelberg-New York: Springer-Verlag, 1997

    MATH  Google Scholar 

  19. Lin T-C, Belić M R, Petrović M S, et al. Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. J Opt Soc Am B, 2013, 30: 1036–1040

    Article  Google Scholar 

  20. Lin T-C, Belić M R, Petrović M S, et al. Ground states of nonlinear Schrödinger systems with saturable nonlinearity in ℝ2 for two counterpropogating beams. J Math Phys, 2014, 55: 011505

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin T-C, Belić M R, Petrović M S, et al. The virial theorem and ground state energy estimates of nonlinear Schrödinger equations in ℝ2 with square root and saturable nonlinearities in nonlinear optics. Calc Var Partial Differential Equations, 2017, 56: 1–20

    Article  MATH  Google Scholar 

  22. Lin T-C, Wang X M, Wang Z-Q. Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in ℝ2. J Differential Equations, 2017, 263: 4750–4786

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin T-C, Wu T-F. Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions. Discrete Contin Dyn Syst, 2020, 40: 2165–2187

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109–145

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223–283

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu X Q, Liu J Q, Wang Z-Q. Localized nodal solutions for quasilinear Schrödinger equations. J Differential Equations, 2019, 267: 7411–7461

    Article  MathSciNet  MATH  Google Scholar 

  27. Maia L A, Montefusco E, Pellacci B. Weakly coupled nonlinear Schrödinger systems: The saturation effect. Calc Var Partial Differential Equations, 2013, 46: 325–351

    Article  MathSciNet  MATH  Google Scholar 

  28. Maia L A, Montefusco E, Pellacci B. Singularly perturbed elliptic problems with nonautonomous asymptotically linear nonlinearities. Nonlinear Anal, 2015, 16: 193–209

    Article  MathSciNet  MATH  Google Scholar 

  29. Mandel R, Montefusco E, Pellacci B. Oscillating solutions for nonlinear Helmholtz equations. Z Angew Math Phys, 2017, 68: 68–121

    Article  MathSciNet  MATH  Google Scholar 

  30. Moroz V, Van Schaftingen J. Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calc Var Partial Differential Equations, 2010, 37: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43: 270–292

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang X F. On concentration of positive bound states of nonlinear Schrödinger equations. Comm Math Phys, 1993, 153: 229–244

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang X F, Zeng B. On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J Math Anal, 1997, 28: 633–655

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang X M, Lin T-C, Wang Z-Q. Existence and concentration of ground states for saturable nonlinear Schrödinger equations with intensity functions in ℝ2. Nonlinear Anal, 2018, 173: 19–36

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang X M, Wang Z-Q. Normalized multi-bump solutions for saturable Schrödinger equations. Adv Nonlinear Anal, 2020, 9: 1259–1277

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang C X, Wang Z-Q. Concentration of nodal solutions for logarithmic scalar field equations. J Math Pures Appl (9), 2020, 135: 1–25

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Xiaoming Wang was supported by National Natural Science Foundation of China (Grant No. 11861053). Zhi-Qiang Wang was supported by National Natural Science Foundation of China (Grant No. 11831009). Xu Zhang was supported by National Natural Science Foundation of China (Grant No. 11901582). The authors thank the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, ZQ. & Zhang, X. Localization of normalized solutions for saturable nonlinear Schrödinger equations. Sci. China Math. 66, 2495–2522 (2023). https://doi.org/10.1007/s11425-022-2052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2052-1

Keywords

MSC(2020)

Navigation