Skip to main content
Log in

Analysis of the local discontinuous Galerkin method with generalized fluxes for one-dimensional nonlinear convection-diffusion systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present optimal error estimates of the local discontinuous Galerkin method with generalized numerical fluxes for one-dimensional nonlinear convection-diffusion systems. The upwind-biased flux with the adjustable numerical viscosity for the convective term is chosen based on the local characteristic decomposition, which is helpful in resolving discontinuities of degenerate parabolic equations without enforcing any limiting procedure. For the diffusive term, a pair of generalized alternating fluxes are considered. By constructing and analyzing generalized Gauss-Radau projections with respect to different convective or diffusive terms, we derive optimal error estimates for nonlinear convection-diffusion systems with the symmetrizable flux Jacobian and fully nonlinear diffusive problems. Numerical experiments including long time simulations, different boundary conditions and degenerate equations with discontinuous initial data are provided to demonstrate the sharpness of theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. New York: Springer-Verlag, 1994

    Book  MATH  Google Scholar 

  2. Buli J, Xing Y L. Local discontinuous Galerkin methods for the Boussinesq coupled BBM system. J Sci Comput, 2018, 75: 536–559

    Article  MathSciNet  MATH  Google Scholar 

  3. Castillo P, Gómez S. On the convergence of the local discontinuous Galerkin method applied to a stationary one dimensional fractional diffusion problem. J Sci Comput, 2020, 85: 32

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng Y. Optimal error estimate of the local discontinuous Galerkin methods based on the generalized alternating numerical fluxes for nonlinear convection-diffusion equations. Numer Algorithms, 2019, 80: 1329–1359

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng Y. On the local discontinuous Galerkin method for singularly perturbed problem with two parameters. J Comput Appl Math, 2021, 392: 113485

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng Y, Meng X, Zhang Q. Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math Comp, 2017, 86: 1233–1267

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn B, Hou S C, Shu C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math Comp, 1990, 54: 545–581

    MathSciNet  MATH  Google Scholar 

  8. Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J Comput Phys, 1989, 84: 90–113

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math Comp, 1989, 52: 411–435

    MathSciNet  MATH  Google Scholar 

  10. Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis P J. Circulant Matrices. New York-Chichester-Brisbane: John Wiley & Sons, 1979

    MATH  Google Scholar 

  12. Guo R C, Xing Y L. Optimal energy conserving local discontinuous Galerkin methods for elastodynamics: Semi and fully discrete error analysis. J Sci Comput, 2021, 87: 13

    Article  MathSciNet  Google Scholar 

  13. Li J, Zhang D Z, Meng X, et al. Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations. Math Comp, 2020, 89: 2085–2111

    Article  MathSciNet  MATH  Google Scholar 

  14. Li J, Zhang D Z, Meng X, et al. Discontinuous Galerkin methods for nonlinear scalar conservation laws: Generalized local Lax-Friedrichs numerical fluxes. SIAM J Numer Anal, 2020, 58: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu H L, Ploymaklam N. A local discontinuous Galerkin method for the Burgers-Poisson equation. Numer Math, 2015, 129: 321–351

    Article  MathSciNet  MATH  Google Scholar 

  16. Lott P A, Elman H. Fast iterative solver for convection-diffusion systems with spectral elements. Numer Methods Partial Differential Equations, 2011, 27: 231–254

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo J, Shu C W, Zhang Q. A priori error estimates to smooth solutions of the third order Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. ESAIM Math Model Numer Anal, 2015, 49: 991–1018

    Article  MathSciNet  MATH  Google Scholar 

  18. May S. Spacetime discontinuous Galerkin methods for solving convection-diffusion systems. ESAIM Math Model Numer Anal, 2017, 51: 1755–1781

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazaheri A, Nishikawa H. Efficient high-order discontinuous Galerkin schemes with first-order hyperbolic advection-diffusion system approach. J Comput Phys, 2016, 321: 729–754

    Article  MathSciNet  MATH  Google Scholar 

  20. Meng X, Ryan J K. Divided difference estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmetric systems of hyperbolic conservation laws. IMA J Numer Anal, 2018, 38: 125–155

    Article  MathSciNet  MATH  Google Scholar 

  21. Meng X, Shu C W, Wu B Y. Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math Comp, 2016, 85: 1225–1261

    Article  MathSciNet  MATH  Google Scholar 

  22. Michoski C, Alexanderian A, Paillet C, et al. Stability of nonlinear convection-diffusion-reaction systems in discontinuous Galerkin methods. J Sci Comput, 2017, 70: 516–550

    Article  MathSciNet  MATH  Google Scholar 

  23. Rossi F, Budroni M A, Marchettini N, et al. Segmented waves in a reaction-diffusion-convection system. Chaos, 2012, 22: 037109

    Article  MathSciNet  Google Scholar 

  24. Tao Q, Xia Y H. Error estimates and post-processing of local discontinuous Galerkin method for Schrödinger equations. J Comput Appl Math, 2019, 356: 198–218

    Article  MathSciNet  MATH  Google Scholar 

  25. Tian L, Xu Y, Kuerten J G M, et al. An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations. J Comput Phys, 2016, 319: 242–265

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang H J, Zhang Q, Wang S P, et al. Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Sci China Math, 2020, 63: 183–204

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu Y, Shu C W. Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J Comput Phys, 2005, 205: 72–97

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu Y, Shu C W. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput Methods Appl Mech Engrg, 2007, 196: 3805–3822

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan J, Shu C W. A local discontinuous Galerkin method for KdV type equations. SIAM J Numer Anal, 2002, 40: 769–791

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang Q, Shu C W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. SIAM J Numer Anal, 2006, 44: 1703–1720

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou G H. A local L2-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems. ESAIM Math Model Numer Anal, 1995, 29: 577–603

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11971132 and 11971131), Natural Science Foundation of Heilongjiang Province (Grant No. YQ2021A002) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515310006). The authors thank the referees for their helpful suggestions that result in the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, B. & Meng, X. Analysis of the local discontinuous Galerkin method with generalized fluxes for one-dimensional nonlinear convection-diffusion systems. Sci. China Math. 66, 2641–2664 (2023). https://doi.org/10.1007/s11425-022-2035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-022-2035-y

Keywords

MSC(2020)

Navigation