Skip to main content
Log in

On the core entropy of Newton maps

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we define the core entropy for postcritically-finite Newton maps and study its continuity within this family. We show that the entropy function is not continuous in this family, which is different from the polynomial case, and describe completely the continuity of the entropy function at the generic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler R L, Konheim A G, McAndrew M H. Topological entropy. Trans Amer Math Soc, 1965, 114: 309–319

    Article  MathSciNet  Google Scholar 

  2. Alsedà L, Misiurewicz M. Semiconjugacy to a map of a constant slope. Discrete Contin Dyn Syst Ser B, 2015, 20: 3403–3413

    MathSciNet  Google Scholar 

  3. Aspenberg M, Roesch. P. Newton maps as matings of cubic polynomials. Proc Lond Math Soc (3), 2016, 113: 77–112

    Article  MathSciNet  Google Scholar 

  4. Bielefeld B, Fisher Y, Hubbard J. The classification of critically preperiodic polynomials as dynamical systems. J Amer Math Soc, 1992, 5: 721–762

    Article  MathSciNet  Google Scholar 

  5. Branner B, Hubbard J. The iteration of cubic polynomials Part II: Patterns and parapatterns. Acta Math, 1992, 169: 229–325

    Article  MathSciNet  Google Scholar 

  6. Bruin H, Schleicher D. Hausdorff dimension of biaccessible angles for quadratic polynomials. Fund Math, 2017, 238: 201–239

    Article  MathSciNet  Google Scholar 

  7. Cui G Z, Tan L. Distortion control of conjugacies between quadratic polynomials. Sci China Math, 2010: 53, 625–634

    Article  MathSciNet  Google Scholar 

  8. Cui G Z, Tan L. A characterization of hyperbolic rational maps. Invent Math, 2011, 183: 451–516

    Article  MathSciNet  Google Scholar 

  9. Cui G Z, Tan L. Hyperbolic-parabolic deformations of rational maps. Sci China Math, 2018, 61: 2157–2220

    Article  MathSciNet  Google Scholar 

  10. Douady A. Topological entropy of unimodal maps: Monotonicity for quadratic polynomials. In: Real and Complex Dynamical Systems. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 464. Dordrecht: Kluwer, 1995, 65–87

    Chapter  Google Scholar 

  11. Douady A, Hubbard J H. Exploring the Mandelbrot set. The Orsay notes. https://pi.math.cornell.edu/~hubbard/OrsayEnglish.pdf, 1982

  12. Douady A, Hubbard J H. On the dynamics of polynomial-like mappings. Ann Sci Éc Norm Supér (4), 1985, 18: 287–343

    Article  MathSciNet  Google Scholar 

  13. Douady A, Hubbard J H. A proof of Thurston’s topological characterization of rational functions. Acta Math, 1993, 171: 263–297

    Article  MathSciNet  Google Scholar 

  14. Drach K, Mikulich Y, Rückert J, et al. A combinatorial classification of postcritically fixed Newton maps. Ergodic Theory Dynam Systems, 2019, 39: 2983–3014

    Article  MathSciNet  Google Scholar 

  15. Dudko D, Schleicher D. Core entropy of quadratic polynomials. With an appendix by W. Jung. Arnold Math J, 2020, 6: 333–385

    Article  MathSciNet  Google Scholar 

  16. Gao Y. Dynatomic periodic curve and core entropy for polynomials. PhD Dissertation. Angers: Angers University, 2013

    Google Scholar 

  17. Gao Y. On Thurston’s core entropy algorithm. Trans Amer Math Soc, 2020, 373: 747–776

    Article  MathSciNet  Google Scholar 

  18. Gao Y, Tiozzo G. The core entropy for polynomials of higher degree. J Eur Math Soc (JEMS), 2023, 24: 2555–2603

    Article  MathSciNet  Google Scholar 

  19. Gao Y, Zeng J S. The landing of parameter rays at non-recurrent critical portraits. Sci China Math, 2018, 61: 2267–2282

    Article  MathSciNet  Google Scholar 

  20. Goldberg L R, Milnor J. Fixed point portraits of polynomial maps, Part II: Fixed point portraits. Ann Sci Éc Norm Supér (4), 1993, 26: 51–98

    Article  Google Scholar 

  21. Head J. The combinatorics of Newton’s method for cubic polynomials. PhD Dissertation. Ithaca: Cornell University, 1988

    Google Scholar 

  22. Hubbard J, Schleicher D, Sutherland S. How to find all roots of complex polynomials by Newton’s method. Invent Math, 2001, 146: 1–33

    Article  MathSciNet  Google Scholar 

  23. Jung W. Core entropy and biaccessibility of quadratic polynomials. arXiv:1401.4792, 2014

  24. Kiwi J. Rational lamination of complex polynomials. In: Laminations and Foliations in Dynamics, Geometry and Topology. Contemporary Mathematics, vol. 269. Providence: Amer Math Soc, 2001, 111–154

    Chapter  Google Scholar 

  25. Kiwi J. Combinatorial continuity in complex polynomial dynamics. Proc Lond Math Soc (3), 2005, 91: 215–248

    Article  MathSciNet  Google Scholar 

  26. Levin G, Przytycki F. External rays to periodic points. Israel J Math, 1996, 94: 29–57

    Article  MathSciNet  Google Scholar 

  27. Levin G, Sodin M. Polynomials with disconnected Julia sets and Green maps. In: Dynamical Systems and Complex Analysis. Kiev: Naukova Dumka, 1992, 17–24

    Google Scholar 

  28. Li T. A monotonicity conjecture for the entropy of Hubbard trees. PhD Dissertation. New York: SUNY Stony Brook, 2007

    Google Scholar 

  29. Lodge R, Mikulich Y H, Schleicher D. A classification of postcritically finite Newton maps. In: In the Tradition of Thurston II. Cham: Springer, 2022, 421–448

    Chapter  Google Scholar 

  30. Lodge R, Mikulich Y H, Schleicher D. Combinatorial properties of Newton maps. Indiana Univ Math J, 2021, 70: 1833–1867

    Article  MathSciNet  Google Scholar 

  31. McMullen C. Automorphisms of rational maps. In: Holomorphic Functions and Moduli. New York: Springer, 1988, 31–60

    Chapter  Google Scholar 

  32. Meerkamp P, Schleicher D. Hausdorff dimension and biaccessibility for polynomial Julia sets. Proc Amer Math Soc, 2013, 141: 533–542

    Article  MathSciNet  Google Scholar 

  33. Milnor J. Dynamics in One Complex Variable. Princeton: Princeton University Press, 2006

    Google Scholar 

  34. Milnor J, Thurston W. On iterated maps of the interval. In: Dynamical Systems. Lecture Notes in Mathematics, vol. 1342. Berlin: Springer, 1988, 465–563

    Chapter  Google Scholar 

  35. Pilgrim K, Tan L. Rational maps with disconnected Julia set. Astérisque, 2000, 261: 349–384

    MathSciNet  Google Scholar 

  36. Poirier A. Critical portraits for postcritically finite polynomials. Fund Math, 2009, 203: 107–163

    Article  MathSciNet  Google Scholar 

  37. Poirier A. Hubbard trees. Fund Math, 2010, 208: 193–248

    Article  MathSciNet  Google Scholar 

  38. Roesch P. On local connectivity for the Julia set of rational maps: Newton’s famous example. Ann of Math (2), 2008, 168: 127–174

    Article  MathSciNet  Google Scholar 

  39. Roesch P, Wang X G, Yin Y C. Moduli space of cubic Newton maps. Adv Math, 2017, 322: 1–59

    Article  MathSciNet  Google Scholar 

  40. Rückert J, Schleicher D. On Newton’s method for entire functions. J Lond Math Soc (2), 2007, 75: 659–676

    Article  MathSciNet  Google Scholar 

  41. Shishikura M. The connectivity of the Julia set and fixed points. In: Complex Dynamics. Wellesley: A. K. Peters, 2009, 257–276

    Chapter  Google Scholar 

  42. Tan L. Branched coverings and cubic Newton maps. Fund Math, 1997, 154: 207–260

    Article  MathSciNet  Google Scholar 

  43. Thurston W, Baik H, Gao Y, et al. Degree-d invariant laminations. In: Annals of Mathematics Studies, vol. 205. Princeton: Princeton University Press, 2020, 259–325

    Google Scholar 

  44. Tiozzo G. Continuity of core entropy of quadratic polynomials. Invent Math, 2016, 203: 891–921

    Article  MathSciNet  Google Scholar 

  45. Wang X G, Yin Y C, Zeng J S. Dynamics on Newton maps. Ergodic Theory Dynam Systems, 2023, 43: 1035–1080

    Article  MathSciNet  Google Scholar 

  46. Zakeri S. Biaccessibility in quadratic Julia sets. Ergodic Theory Dynam Systems, 2000, 20: 1859–1883

    Article  MathSciNet  Google Scholar 

  47. Zdunik A. On biaccessible points in Julia sets of polynomials. Fund Math, 2000, 163: 277–286

    Article  MathSciNet  Google Scholar 

  48. Zeng J S. Criterion for rays landing together. Trans Amer Math Soc, 2020, 373: 6479–6502

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11871354 and 12131016). The author thanks Laura DeMarco for very helpful discussion and suggestions. The author is also grateful for the referees’ comments and suggestions for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y. On the core entropy of Newton maps. Sci. China Math. 67, 77–128 (2024). https://doi.org/10.1007/s11425-021-2010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2010-1

Keywords

MSC(2020)

Navigation