Skip to main content

A Classification of Postcritically Finite Newton Maps

  • Chapter
  • First Online:
In the Tradition of Thurston II

Abstract

The dynamical classification of rational maps is a central concern of holomorphic dynamics. Much progress has been made, especially on the classification of polynomials and some approachable one-parameter families of rational maps; the goal of finding a classification of general rational maps is so far elusive. Newton maps (rational maps that arise when applying Newton’s method to a polynomial) form a most natural family to be studied from the dynamical perspective. Using Thurston’s characterization and rigidity theorem, a complete combinatorial classification of postcritically finite Newton maps is given in terms of a finite connected graph satisfying certain explicit conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We denote the n-th iterate of a dynamical system f : X → X by fn : X → X.

References

  1. B. Bielefeld, Y. Fisher, J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems. J. Am. Math. Soc. 5, 721–762 (1992)

    Article  MathSciNet  Google Scholar 

  2. X. Buff, A. Epstein, S. Koch, Twisted matings and equipotential gluings. Ann. Fac. Sci. Toulouse Math. 6(21), 995–1031 (2012)

    MathSciNet  MATH  Google Scholar 

  3. X. Buff, G. Cui, L. Tan, Teichmüller spaces and holomorphic dynamics, in Handbook of Teichmüller Theory, ed. by A. Papadopoulos, vol. IV (European Mathematical Society, 2014), pp. 717–756

    Google Scholar 

  4. K. Cordwell, S. Gilbertson, N. Nuechterlein, K. Pilgrim, S. Pinella, On the classification of critically fixed rational maps. Conform. Geom. Dyn. 19, 51–94 (2015)

    Article  MathSciNet  Google Scholar 

  5. A. Douady, J. Hubbard, A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, 263–297 (1993)

    Article  MathSciNet  Google Scholar 

  6. K. Drach, D. Schleicher, Rigidity of Newton dynamics (2018). arXiv:1812.11919

    Google Scholar 

  7. K. Drach, Y. Mikulich, J. Rückert, D. Schleicher, A combinatorial classification of postcritically fixed Newton maps. Ergodic Theory Dyn. Syst. 39(11), 2983–3014 (2019)

    Article  MathSciNet  Google Scholar 

  8. K. Drach, R. Lodge, D. Schleicher, M. Sowinski, Puzzles and the Fatou-Shishikura injection for rational Newton maps. Trans. Am. Math. Soc. 374, 2753–2784 (2021)

    Article  MathSciNet  Google Scholar 

  9. B. Farb, D. Margalit, A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49 (Princeton University Press, Princeton, 2011)

    Google Scholar 

  10. L. Geyer, Classification of critically fixed anti-rational maps (2020). arXiv:2006.10788

    Google Scholar 

  11. J. Head, The combinatorics of Newton’s method for cubic polynomials. Ph.D. Thesis, Cornell University (1987)

    Google Scholar 

  12. M. Hlushchanka, Tischler graphs of critically fixed rational maps and their applications (2019). arXiv:1904.04759v1

    Google Scholar 

  13. J. Hubbard, D. Schleicher, S. Sutherland, How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146, 1–33 (2001)

    Article  MathSciNet  Google Scholar 

  14. R. Lodge, Y. Luo, S. Mukherjee, Circle packings, kissing reflection groups and critically fixed anti-rational maps. Forum Math. Sigma (2020). arXiv:2007.03558

    Google Scholar 

  15. R. Lodge, Y. Mikulich, D. Schleicher, Combinatorial properties of Newton maps. Indiana Univ. Math. J. 70(5), 1833–1867 (2021)

    Article  MathSciNet  Google Scholar 

  16. J. Luo, Combinatorics and holomorphic dynamics: captures, matings, Newton’s method. Ph.D. Thesis, Cornell University (1995)

    Google Scholar 

  17. K. Mamayusupov, A characterization of postcritically minimal Newton maps of complex exponential functions. Ergodic Theory Dyn. Syst. 39(10), 2855–2880 (2019)

    Article  MathSciNet  Google Scholar 

  18. C. McMullen, Complex Dynamics and Renormalization. Annals of Mathematics Studies, vol. 135 (Princeton University Press, Princeton, 1994)

    Google Scholar 

  19. Y. Mikulich, A classification of postcritically finite Newton maps. Ph.D. Thesis, Jacobs University Bremen (2011)

    Google Scholar 

  20. J. Milnor, Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160 (Princeton University Press, Princeton, 2006)

    Google Scholar 

  21. K. Pilgrim, L. Tan, Combining rational maps and controlling obstructions. Ergodic Theory Dyn. Syst. 18, 221–245 (1998)

    Article  MathSciNet  Google Scholar 

  22. A. Poirier, Hubbard trees. Fundam. Math. 208(3), 193–248 (2010)

    Article  MathSciNet  Google Scholar 

  23. M. Randig, D. Schleicher, R. Stoll, Newton’s method in practice II: the iterated refinement Newton method and near-optimal complexity for finding all roots of some polynomials of very large degrees (2017). arXiv:1703.05847

    Google Scholar 

  24. P. Roesch, Y. Yin, J. Zeng, Rigidity of non-renormalizable Newton maps (2018). arXiv:1811.09978

    Google Scholar 

  25. J. Rückert, Newton’s method as a dynamical system. Ph.D. Thesis, International University Bremen (2006)

    Google Scholar 

  26. D. Schleicher, On the efficient global dynamics of Newton’s method for complex polynomials (2011). arXiv:1108.5773

    Google Scholar 

  27. D. Schleicher, R. Stoll, Newton’s method in practice: finding all roots of polynomials of degree one million efficiently. Theor. Comput. Sci. 681, 146–166 (2017)

    Article  MathSciNet  Google Scholar 

  28. S. Shemyakov, R. Chernov, D. Rumiantsau, D. Schleicher, S. Schmitt, A. Shemyakov, Finding polynomial roots by dynamical systems — a case study. Discrete Contin. Dyn. Syst. 40(12), 6945–6965 (2020)

    Article  MathSciNet  Google Scholar 

  29. L. Tan, Branched coverings and cubic Newton maps. Fundam. Math. 154, 207–259 (1997)

    Article  MathSciNet  Google Scholar 

  30. X. Wang, Y. Yin, J. Zeng, Dynamics of Newton maps (2018). arXiv:1805.11478

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Deutsche Forschungsgemeinschaft (DFG), as well as the Advanced Grant 695621 HOLOGRAM of the European Research Council (ERC), which is gratefully acknowledged. The authors are most grateful to the anonymous referee for very helpful comments that have led to marked improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Schleicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lodge, R., Mikulich, Y., Schleicher, D. (2022). A Classification of Postcritically Finite Newton Maps. In: Ohshika, K., Papadopoulos, A. (eds) In the Tradition of Thurston II. Springer, Cham. https://doi.org/10.1007/978-3-030-97560-9_13

Download citation

Publish with us

Policies and ethics