Skip to main content
Log in

New existence of multi-spike solutions for the fractional Schrödinger equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the following fractional Schrödinger equation:

$${\left( { - \Delta } \right)^s}u + V\left( y \right)u = {u^p},\,\,\,\,\,\,u > 0\,\,\,\,{\rm{in}}\,\,{\mathbb{R}^N},$$
((0.1))

where s ∈ (0, 1), \(1 < p < {{N + 2s} \over {N - 2s}}\), and V(y) is a positive potential function and satisfies some expansion condition at infinity. Under the Lyapunov-Schmidt reduction framework, we construct two kinds of multi-spike solutions for (0.1). The first k-spike solution uk is concentrated at the vertices of the regular k-polygon in the (y1, y2)-plane with k and the radius large enough. Then we show that uk is non-degenerate in our special symmetric workspace, and glue it with an n-spike solution, whose centers lie in another circle in the (y3, y4)-plane, to construct infinitely many multi-spike solutions of new type. The nonlocal property of (−Δ)s is in sharp contrast to the classical Schrödinger equations. A striking difference is that although the nonlinear exponent in (0.1) is Sobolev-subcritical, the algebraic (not exponential) decay at infinity of the ground states makes the estimates more subtle and difficult to control. Moreover, due to the non-locality of the fractional operator, we cannot establish the local Pohozaev identities for the solution u directly, but we address its corresponding harmonic extension at the same time. Finally, to construct new solutions we need pointwise estimates of new approximation solutions. To this end, we introduce a special weighted norm, and give the proof in quite a different way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum D. Lévy Processes and Stochastic Calculus, 2nd ed. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge: Cambridge University Press, 2009

    Book  MATH  Google Scholar 

  2. Barrios B, Colorado E, de Pablo A, et al. On some critical problems for the fractional Laplacian operator. J Differential Equations, 2012, 252: 6133–6162

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrios B, Colorado E, Servadei R, et al. A critical fractional equation with concave-convex power nonlinearities. Ann Inst H Poincaré Anal Non Linéaire, 2015, 32: 875–900

    Article  MathSciNet  MATH  Google Scholar 

  4. Brändle C, Colorado E, de Pablo A, et al. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 143: 39–71

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabré X, Sire Y. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann Inst H Poincaré Anal Non Linéaire, 2014, 31: 23–53

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabré X, Tan J G. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224: 2052–2093

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245–1260

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen W, Li Y, Ma P. The Fractional Laplacian. Singapore: World Scientific, 2019

    Google Scholar 

  9. Dávila J, del Pino M, Wei J C. Concentrating standing waves for the fractional nonlinear Schrödinger equation. J Differential Equations, 2014, 256: 858–892

    Article  MathSciNet  MATH  Google Scholar 

  10. del Pino M, Wei J, Ao W. Intermediate reduction method and infinitely many positive solutions of nonlinear Schrödinger equations with non-symmetric potentials. Calc Var Partial Differential Equations, 2015, 53: 473–523

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

    Article  MathSciNet  MATH  Google Scholar 

  12. Dipierro S, Palatucci G, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche (Catania), 2013, 68: 201–216

    MathSciNet  MATH  Google Scholar 

  13. Felmer P, Quaas A, Tan J G. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237–1262

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank R L, Lenzmann E. Uniqueness of non-linear ground states for fractional Laplacians in ℝ. Acta Math, 2013, 210: 261–318

    Article  MathSciNet  MATH  Google Scholar 

  15. Frank R L, Lenzmann E, Silvestre L. Uniqueness of radial solutions for the fractional Laplacian. Comm Pure Appl Math, 2016, 69: 1671–1726

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo Y X, Liu T, Nie J J. Solutions for fractional operator problem via local Pohozaev identities. arXiv:1904.08316, 2019

  17. Guo Y X, Musso M, Peng S J, et al. Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J Funct Anal, 2020, 279: 108553

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo Y X, Musso M, Peng S J, et al. Non-degeneracy and existence of new solutions for the Schrödinger equations. J Differential Equations, 2022, 326: 254–279

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo Y X, Nie J J. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete Contin Dyn Syst, 2016, 36: 6873–6898

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo Y X, Nie J J, Niu M M, et al. Local uniqueness and periodicity for the prescribed scalar curvature problem of fractional operator in ℝN. Calc Var Partial Differential Equations, 2017, 56: 118

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin T L, Li Y Y, Xiong J G. On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions. J Eur Math Soc (JEMS), 2014, 16: 1111–1171

    Article  MathSciNet  MATH  Google Scholar 

  22. Long W, Peng S J, Yang J. Infinitely many positive and sign-changing solutions for nonlinear factional scalar field equations. Discrete Contin Dyn Syst, 2016, 36: 917–939

    MathSciNet  MATH  Google Scholar 

  23. Niu M M, Tang Z W, Wang L S. Solutions for conformally invariant fractional Laplacian equations with multi-bumps centered in lattices. J Differential Equations, 2019, 266: 1756–1831

    Article  MathSciNet  MATH  Google Scholar 

  24. Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60: 67–112

    Article  MathSciNet  MATH  Google Scholar 

  25. Sire Y, Valdinoci E. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result. J Funct Anal, 2009, 256: 1842–1864

    Article  MathSciNet  MATH  Google Scholar 

  26. Tan J G. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differential Equations, 2011, 42: 21–41

    Article  MathSciNet  MATH  Google Scholar 

  27. Tan J G, Xiong J G. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin Dyn Syst, 2011, 31: 975–983

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei J C, Yan S S. Infinitely many solutions for the prescribed scalar curvature problem on \({\mathbb{S}^N}\). J Funct Anal, 2010, 258: 3048–3081

    Article  MathSciNet  MATH  Google Scholar 

  29. Weinstein M I. Solitary waves of nonlinear dispersive evolution equations with critical power nonlinearities. J Differential Equations, 1987, 69: 192–203

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan S S, Yang J F, Yu X H. Equations involving fractional Laplacian operator: Compactness and application. J Funct Anal, 2015, 269: 47–79

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Qing Guo was supported by National Natural Science Foundation of China (Grant No. 11771469). Yuxia Guo was supported by National Natural Science Foundation of China (Grant No. 11771235). Shuangjie Peng was supported by National Natural Science Foundation of China (Grant No. 11831009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Guo, Y. & Peng, S. New existence of multi-spike solutions for the fractional Schrödinger equations. Sci. China Math. 66, 977–1002 (2023). https://doi.org/10.1007/s11425-021-1991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1991-3

Keywords

MSC(2020)

Navigation