Skip to main content
Log in

Product (α1, α2)-modulation spaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study fundamental properties of product (α1, α2)-modulation spaces built by (α1, α2)-coverings of ℝn1 × ℝn2. Precisely we prove embedding theorems between these spaces with different parameters and other classical spaces. Furthermore, we specify their duals. The characterization of product modulation spaces via the short time Fourier transform is also obtained. Families of tight frames are constructed and discrete representations in terms of corresponding sequence spaces are derived. Fourier multipliers are studied and as applications we extract lifting properties and the identification of our spaces with (fractional) Sobolev spaces with mixed smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi A, Gröchenig K, Okoudjou K A, et al. Unimodular Fourier multipliers for modulation spaces. J Funct Anal, 2007, 246: 366–384

    Article  MathSciNet  MATH  Google Scholar 

  2. Borup L, Nielsen M. Banach frames for multivariate α-modulation spaces. J Math Anal Appl, 2006, 321: 880–895

    Article  MathSciNet  MATH  Google Scholar 

  3. Borup L, Nielsen M. Boundedness for pseudodifferential operators on multivariate α-modulation spaces. Ark Mat, 2006, 44: 241–259

    Article  MathSciNet  MATH  Google Scholar 

  4. Borup L, Nielsen M. Frame decomposition of decomposition spaces. J Fourier Anal Appl, 2007, 13: 39–70

    Article  MathSciNet  MATH  Google Scholar 

  5. Borup L, Nielsen M. On anisotropic Triebel-Lizorkin type spaces, with applications to the study of pseudo-differential operators. J Funct Spaces Appl, 2008, 6: 107–154

    Article  MathSciNet  MATH  Google Scholar 

  6. Bownik M, Li B, Yang D, et al. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442

    Article  MathSciNet  MATH  Google Scholar 

  7. Bui T A, Duong X T, Li J. VMO spaces associated with operators with Gaussian upper bounds on product domains. J Geom Anal, 2017, 27: 1065–1085

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang S-Y A, Fefferman R. A continuous version of duality of H1 with BMO on the bidisc. Ann of Math (2), 1980, 112: 179–201

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104: 445–468

    Article  MATH  Google Scholar 

  10. Chang S-Y A, Fefferman R. Some recent developments in Fourier analysis and Hp-theory on product domains. Bull Amer Math Soc NS, 1985, 12: 1–43

    Article  MATH  Google Scholar 

  11. Chen J, Wang H. Singular integral operators on product Triebel-Lizorkin spaces. Sci China Math, 2010, 53: 335–346

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen P, Duong X T, Li J, et al. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type. Math Z, 2016, 282: 1033–1065

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen P, Duong X T, Li J, et al. Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type. J Fourier Anal Appl, 2017, 23: 21–64

    Article  MathSciNet  MATH  Google Scholar 

  14. Cleanthous G, Georgiadis A G. Mixed-norm α-modulation spaces. Trans Amer Math Soc, 2020, 373: 3320–3356

    Article  MathSciNet  MATH  Google Scholar 

  15. Cleanthous G, Georgiadis A G, Nielsen M. Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl Comput Harmon Anal, 2019, 47: 447–480

    Article  MathSciNet  MATH  Google Scholar 

  16. Cleanthous G, Georgiadis A G, Nielsen M. Fourier multipliers on anisotropic mixed-norm spaces of distributions. Math Scand, 2019, 124: 289–304

    Article  MathSciNet  MATH  Google Scholar 

  17. Dahlke S, Fornasier M, Rauhut H, et al. Generalized coorbit theory, Banach frames and a relation to α-modulation spaces. Proc Lond Math Soc (3), 2008, 96: 464–506

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding W, Lu G. Duality of multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators. Trans Amer Math Soc, 2016, 368: 7119–7152

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding W, Lu G, Zhu Y. Multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integrals and their atomic decomposition. Forum Math, 2016, 28: 25–42

    MathSciNet  MATH  Google Scholar 

  20. Fefferman R. Calderón-Zygmund theory for product domains: Hp spaces. Proc Natl Acad Sci USA, 1986, 83: 840–843

    Article  MATH  Google Scholar 

  21. Fefferman R. Multiparameter Fourier analysis. In: Beijing Lectures in Harmonic Analysis. Annals of Mathematics Studies, vol. 112. Princeton: Princeton University Press, 1986, 47–130

    MATH  Google Scholar 

  22. Fefferman R. Harmonic analysis on product spaces. Ann of Math (2), 1987, 126: 109–130

    Article  MathSciNet  MATH  Google Scholar 

  23. Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

    Article  MathSciNet  MATH  Google Scholar 

  24. Feichtinger H G. Modulation spaces on locally compact Abelian groups. Technical report, University Vienna, 1983

  25. Feichtinger H G. Banach spaces of distributions defined by decomposition methods II. Math Nachr, 1987, 132: 207–237

    Article  MathSciNet  MATH  Google Scholar 

  26. Feichtinger H G, Gröbner P. Banach spaces of distributions defined by decomposition methods, I. Math Nachr, 1985, 123: 97–120

    Article  MathSciNet  MATH  Google Scholar 

  27. Feichtinger H G, Huang C, Wang B. Trace operators for modulation, α-modulation and Besov spaces. Appl Comput Harmon Anal, 2011, 30: 110–127

    Article  MathSciNet  MATH  Google Scholar 

  28. Feichtinger H G, Narimani G. Fourier multipliers of classical modulation spaces. Appl Comput Harmon Anal, 2006, 21: 349–359

    Article  MathSciNet  MATH  Google Scholar 

  29. Feichtinger H G, Voigtlaender F. From Frazier-Jawerth characterizations of Besov spaces to wavelets and decomposition spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth. Contemporary Mathematics, vol. 693. Providence: Amer Math Soc, 2017, 185–216

    Google Scholar 

  30. Fornasier M. Banach frames for α-modulation spaces. Appl Comput Harmon Anal, 2007, 22: 157–175

    Article  MathSciNet  MATH  Google Scholar 

  31. Frazier M, Jawerth B. A discrete transform and decompositions of distribution. J Funct Anal, 1990, 93: 34–170

    Article  MathSciNet  MATH  Google Scholar 

  32. Führ H, Voigtlaender F. Wavelet coorbit spaces viewed as decomposition spaces. J Funct Anal, 2015, 269: 80–154

    Article  MathSciNet  MATH  Google Scholar 

  33. Georgiadis A G, Kyriazis G, Petrushev P. Product Besov and Triebel-Lizorkin spaces with application to nonlinear approximation. Constr Approx, 2021, 53: 39–83

    Article  MathSciNet  MATH  Google Scholar 

  34. Grafakos L. Modern Fourier Analysis, 3rd ed. Graduate Texts in Mathematics, vol. 250. New York: Springer, 2014

    MATH  Google Scholar 

  35. Grohs P, Keiper S, Kutyniok G, et al. α-molecules. Appl Comput Harmon Anal, 2016, 41: 297–336

    Article  MathSciNet  MATH  Google Scholar 

  36. Gröbner P. Banachräume glatter Funktionen and Zerlegungsmethoden. PhD Thesis. Vienna: University of Vienna, 1992

    Google Scholar 

  37. Gröchenig K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001

    Book  MATH  Google Scholar 

  38. Gröchenig K, Heil C. Modulation spaces and pseudodifferential operators. Integral Equations Operator Theory, 1999, 34: 439–457

    Article  MathSciNet  MATH  Google Scholar 

  39. Gundy R, Stein E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1972, 76: 1026–1029

    Article  MATH  Google Scholar 

  40. Guo W, Fan D, Wu H, et al. Sharpness of complex interpolation on α-modulation spaces. J Fourier Anal Appl, 2016, 22: 427–461

    Article  MathSciNet  MATH  Google Scholar 

  41. Han J, Wang B. α-modulation spaces (I) scaling, embedding and algebraic properties. J Math Soc Japan, 2014, 66: 1315–1373

    Article  MathSciNet  MATH  Google Scholar 

  42. Han J, Wang B. α-modulation spaces and the Cauchy problem for nonlinear Schrödinger equations. In: Harmonic Analysis and Nonlinear Partial Differential Equations. RIMS Kôkyûroku Bessatsu, vol. 49. Kyoto: Res Inst Math Sci, 2014, 119–130

    Google Scholar 

  43. Han J, Wang B. α-modulation spaces (II) derivative NLS. J Differential Equations, 2019, 267: 3646–3692

    Article  MathSciNet  MATH  Google Scholar 

  44. Hong Q, Hu G. Molecular decomposition and a class of Fourier multipliers for bi-parameter modulation spaces. Commun Pure Appl Anal, 2019, 18: 3103–3120

    Article  MathSciNet  MATH  Google Scholar 

  45. Kato K, Kobayashi M, Ito S. Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials. J Funct Anal, 2014, 266: 733–753

    Article  MathSciNet  MATH  Google Scholar 

  46. Kato T. The inclusion relations between α-modulation spaces and Lp-Sobolev spaces or local Hardy spaces. J Funct Anal, 2017, 272: 1340–1405

    Article  MathSciNet  MATH  Google Scholar 

  47. Kobayashi M, Sugimoto M, Tomita N. Trace ideals for pseudo-differential operators and their commutators with symbols in α-modulation spaces. J Anal Math, 2009, 107: 141–160

    Article  MathSciNet  MATH  Google Scholar 

  48. Kyrezi I, Marias M. Hp-bounds for spectral multipliers on graphs. Trans Amer Math Soc, 2009, 361: 1053–1067

    Article  MathSciNet  MATH  Google Scholar 

  49. Li B, Bownik M, Yang D. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J Funct Anal, 2014, 266: 2611–2661

    Article  MathSciNet  MATH  Google Scholar 

  50. Li B, Bownik M, Yang D, et al. Anisotropic singular integrals in product spaces. Sci China Math, 2010, 53: 3163–3178

    Article  MathSciNet  MATH  Google Scholar 

  51. Lizorkin P I, Nikol’skij S M. Classification of differentiable functions on the basis of spaces with dominating mixed derivatives. Tr Mat Inst Steklova, 1965, 77: 143–167

    Google Scholar 

  52. Lohoué N, Marias M. Invariants géométriques des espaces localement symétriques et théorémes de multiplicateurs. Math Ann, 2009, 343: 639–667

    Article  MathSciNet  MATH  Google Scholar 

  53. Mihlin S G. On the multipliers of Fourier integrals. Dokl Akad Nauk SSSR NS, 1956, 109: 701–703

    MathSciNet  Google Scholar 

  54. Molahajloo S, Okoudjou K A, Pfander G E. Boundedness of multilinear pseudo-differential operators on modulation spaces. J Fourier Anal Appl, 2016, 22: 1381–1415

    Article  MathSciNet  MATH  Google Scholar 

  55. Pfeuffer C, Toft J. Compactness properties for modulation spaces. Complex Anal Oper Theory, 2019, 13: 3521–3548

    Article  MathSciNet  MATH  Google Scholar 

  56. Sato S. An atomic decomposition for parabolic Hp spaces on product domains. Proc Amer Math Soc, 1988, 104: 185–192

    MathSciNet  MATH  Google Scholar 

  57. Schmeisser H-J. Maximal inequalities and Fourier multipliers for spaces with mixed quasinorms. Applications. Z Anal Anwend, 1984, 3: 153–166

    Article  MathSciNet  MATH  Google Scholar 

  58. Schmeisser H-J. Recent developments in the theory of function spaces with dominating mixed smoothness. In: Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Prague, vol. 8. Czech Prague: Czech Acad Sci, 2007, 145–204

    MATH  Google Scholar 

  59. Schmeisser H-J, Triebel H. Topics in Fourier Analysis and Function Spaces. Chichester: John Wiley, 1987

    MATH  Google Scholar 

  60. Toft J. Continuity properties for modulation spaces, with applications to pseudo-differential calculus—I. J Funct Anal, 2004, 207: 399–429

    Article  MathSciNet  MATH  Google Scholar 

  61. Triebel H. Theory of Function Spaces. Monographs in Mathematics, vol. 78. Basel: Birkhäauser, 1983

    Book  MATH  Google Scholar 

  62. Voigtlaender F. Embeddings of decomposition spaces. Mem Amer Math Soc, 2022, in press

  63. Wang B, Huang C. Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations. J Differential Equations, 2007, 239: 213–250

    Article  MathSciNet  MATH  Google Scholar 

  64. Xu C, Huang L. Boundedness of bi-parameter pseudo-differential operators on bi-parameter α-modulation spaces. Nonlinear Anal, 2019, 180: 20–40

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by University of Cyprus and New Function Spaces in Harmonic Analysis and Their Applications in Statistics (Individual Grant). The first author expresses her gratitude to Professor George Kyriazis, for his fruitful discussions, his encouragement and for the problems that he brought to her attention. The authors thank Professor Hans G. Feichtinger for his several suggestions and remarks that improved significantly the manuscript. Finally, the authors feel grateful to the three anonymous referees, for their detailed reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Georgiadis.

Additional information

Dedicated to the Memory of Michel Marias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleanthous, G., Georgiadis, A.G. Product (α1, α2)-modulation spaces. Sci. China Math. 65, 1599–1640 (2022). https://doi.org/10.1007/s11425-021-1923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1923-7

Keywords

MSC(2020)

Navigation