Skip to main content
Log in

Anisotropic singular integrals in product spaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the authors introduce a class of product anisotropic singular integral operators, whose kernels are adapted to the action of a pair \( \vec A \):= (A 1, A 2) of expansive dilations on ℝn and ℝm, respectively. This class is a generalization of product singular integrals with convolution kernels introduced in the isotropic setting by Fefferman and Stein. The authors establish the boundedness of these operators in weighted Lebesgue and Hardy spaces with weights in product A Muckenhoupt weights on ℝn × ℝm. These results are new even in the unweighted setting for product anisotropic Hardy spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bownik M. Anisotropic Hardy spaces and wavelets. Mem Amer Math Soc, 2003, 164: 1–122

    MathSciNet  Google Scholar 

  2. Bownik M, Ho K P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans Amer Math Soc, 2006, 358: 1469–1510

    Article  MATH  MathSciNet  Google Scholar 

  3. Bownik M, Li B, Yang D, et al. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ Math J, 2008, 57: 3065–3100

    MATH  MathSciNet  Google Scholar 

  4. Bownik M, Li B, Yang D, et al. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283: 392–442

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderón A P, Torchinsky A. Parabolic maximal functions associated with a distribution. Adv Math, 1975, 16: 1–64

    Article  MATH  Google Scholar 

  6. Calderón A P, Torchinsky A. Parabolic maximal functions associated with a distribution. II. Adv Math, 1977, 24: 101–171

    Article  MATH  Google Scholar 

  7. Chang D C, Sadosky C. Functions of bounded mean oscillation. Taiwanese J Math, 2006, 10: 573–601

    MATH  MathSciNet  Google Scholar 

  8. Chang D C, Yang D, Zhou Y. Boundedness of sublinear operators on product Hardy spaces and its application. J Math Soc Japan, 2010, 62: 321–353

    Article  MATH  MathSciNet  Google Scholar 

  9. Christ M.A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq Math, 1990, 60/61: 601–628

    MathSciNet  Google Scholar 

  10. Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645

    Article  MATH  MathSciNet  Google Scholar 

  11. Fefferman R. Harmonic analysis on product spaces. Ann of Math (2), 1987, 126: 109–130

    Article  MathSciNet  Google Scholar 

  12. Fefferman R. A p weights and singular integrals. Amer J Math, 1988, 110: 975–987

    Article  MATH  MathSciNet  Google Scholar 

  13. Fefferman C, Stein E M. H p spaces of several variables. Acta Math, 1972, 129: 137–193

    Article  MATH  MathSciNet  Google Scholar 

  14. Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

    Article  MATH  MathSciNet  Google Scholar 

  15. Folland G B, Stein E M. Hardy Spaces on Homogeneous Group, Mathematical Notes. Princeton, NJ: Princeton University Press, 1982

    Google Scholar 

  16. García-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland Publishing Co, 1985

    MATH  Google Scholar 

  17. Grafakos L. Classical Fourier Analysis. New York: Springer Press, 2008

    MATH  Google Scholar 

  18. Grafakos L. Modern Fourier Analysis. New York: Springer Press, 2008

    Google Scholar 

  19. Gundy R F, Stein E M. H p theory for the poly-disc. Proc Nat Acad Sci USA, 1979, 76: 1026–1029

    Article  MATH  MathSciNet  Google Scholar 

  20. Han Y, Lee M Y, Lin C C, et al. Calderón-Zygmund operators on product Hardy spaces. J Funct Anal, 2010, 258: 2834–2861

    Article  MATH  MathSciNet  Google Scholar 

  21. Han Y, Lu G. Discrete Littlewood-Paley-Stein theory and multi-parameter Hardy spaces associated with flag singular integrals. arXiv: 0801.1701 (available at http://arxiv.org/abs/0801.1701)

  22. Han Y, Yang D. H p boundedness of Calderón-Zygmund operators on product spaces. Math Z, 2005, 249: 869–881

    Article  MATH  MathSciNet  Google Scholar 

  23. Han Y, Yang D. Boundedness of Calderón-Zygmund operators in product Hardy spaces. Appl Math J Chinese Univ Ser B, 2009, 24: 321–335

    MATH  MathSciNet  Google Scholar 

  24. Haroske D D, Tamási E. Wavelet frames for distributions in anisotropic Besov spaces. Georgian Math J, 2005, 12: 637–658

    MATH  MathSciNet  Google Scholar 

  25. Müller D, Ricci F, Stein E M. Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups. I. Invent Math, 1995, 119: 199–233

    Article  MATH  MathSciNet  Google Scholar 

  26. Nagel A, Stein E M. On the product theory of singular integrals. Rev Mat Iberoamericana, 2004, 20: 531–561

    MathSciNet  Google Scholar 

  27. Nagel A, Stein E M. The \( \bar \partial \) b-complex on decoupled boundaries in Cn. Ann of Math (2), 2006, 164: 649–713

    Article  MATH  MathSciNet  Google Scholar 

  28. Sato S. Weighted inequalities on product domains. Studia Math, 1989, 92: 59–72

    MATH  MathSciNet  Google Scholar 

  29. Schmeisser H J, Triebel H. Topics in Fourier Analysis and Function Spaces. Leipzig: Akademische Verlagsgesellschaft Geest & Portig K G, 1987

    Google Scholar 

  30. Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993

    MATH  Google Scholar 

  31. Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Berlin: Springer-Verlag, 1989

    MATH  Google Scholar 

  32. Triebel H. Fractals and Spectra. Related to Fourier Analysis and Function Spaces. Basel: Birkhäuser Verlag, 1997

    MATH  Google Scholar 

  33. Vybíral J. Function spaces with dominating mixed smoothness. Dissertationes Math (Rozprawy Mat), 2006, 436: 1–73

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaChun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Bownik, M., Yang, D. et al. Anisotropic singular integrals in product spaces. Sci. China Math. 53, 3163–3178 (2010). https://doi.org/10.1007/s11425-010-4108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4108-2

Keywords

MSC(2000)

Navigation