Skip to main content
Log in

On the L stability of Prandtl expansions in the Gevrey class

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove the LL2 stability of Prandtl expansions of the shear flow type as \((U(y/\sqrt \nu ),0)\) for the initial perturbation in the Gevrey class, where U(y) is a monotone and concave function and ν is the viscosity coefficient. To this end, we develop the direct resolvent estimate method for the linearized Orr-Sommerfeld operator instead of the Rayleigh-Airy iteration method. Our method could be applied to the other relevant problems of hydrodynamic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H, Danchin R. Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot Anal, 2004, 38: 35–46

    MathSciNet  MATH  Google Scholar 

  2. Alexandre R, Wang Y-G, Xu C-J, et al. Well-posedness of the Prandtl equation in Sobolev spaces. J Amer Math Soc, 2015, 28: 745–784

    Article  MathSciNet  MATH  Google Scholar 

  3. Beale J T, Majda A. Rates of convergence for viscous splitting of the Navier-Stokes equations. Math Comp, 1981, 37: 243–259

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen D, Wang Y, Zhang Z. Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann Inst H Poincaré Anal Non Linéaire, 2018, 35: 1119–1142

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Q, Li T, Wei D, et al. Transition threshold for the 2-D Couette flow in a finite channel. Arch Ration Mech Anal, 2020, 238: 125–183

    Article  MathSciNet  MATH  Google Scholar 

  6. Clopeau T, Mikelić A, Robert R. On the vanishing viscosity limit for 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity, 1998, 11: 1625–1636

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin P, Wu J. Inviscid limit for vortex patches. Nonlinearity, 1995, 8: 735–742

    Article  MathSciNet  MATH  Google Scholar 

  8. Dietert H, Gérard-Varet D. Well-posedness of the Prandtl equations without any structural assumption. Ann PDE, 2019, 5: 8

    Article  MathSciNet  MATH  Google Scholar 

  9. Fei M, Tao T, Zhang Z. On the zero-viscosity limit of the Navier-Stokes equations in \(\mathbb{R}_ + ^3\) without analyticity. J Math Pures Appl (9), 2018, 112: 170–229

    Article  MathSciNet  MATH  Google Scholar 

  10. Gérard-Varet D, Dormy E. On the ill-posedness of the Prandtl equation. J Amer Math Soc, 2010, 23: 591–609

    Article  MathSciNet  MATH  Google Scholar 

  11. Gérard-Varet D, Maekawa Y. Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations. Arch Ration Mech Anal, 2019, 223: 1319–1382

    Article  MathSciNet  MATH  Google Scholar 

  12. Gérard-Varet D, Maekawa Y, Masmoudi N. Gevrey stability of Prandtl expansions for 2-dimensional Navier-Stokes flows. Duke Math J, 2018, 167: 2531–2631

    Article  MathSciNet  MATH  Google Scholar 

  13. Gérard-Varet D, Maekawa Y, Masmoudi N. Optimal Prandtl expansion around concave boundary layer. arXiv:2005.05022, 2020

  14. Gérard-Varet D, Masmoudi N. Well-posedness for the Prandtl system without analyticity or monotonicity. Ann Sci Éc Norm Supér (4), 2015, 48: 1273–1325

    Article  MathSciNet  MATH  Google Scholar 

  15. Grenier E. On the nonlinear instability of Euler and Prandtl equations. Comm Pure Appl Math, 2000, 53: 1067–1091

    Article  MathSciNet  MATH  Google Scholar 

  16. Grenier E, Guo Y, Nguyen T. Spectral instability of characteristic boundary layer flows. Duke Math J, 2016, 165: 3085–3146

    Article  MathSciNet  MATH  Google Scholar 

  17. Grenier E, Nguyen T. L instability of Prandtl layers. Ann PDE, 2019, 5: 18

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo Y, Iyer S. Validity of steady Prandtl layer expansions. arXiv:1805.05891, 2018

  19. Guo Y, Nguyen T. Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. Ann PDE, 2017, 3: 10

    Article  MathSciNet  MATH  Google Scholar 

  20. Iftimie D, Planas G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 2006, 19: 899–918

    Article  MathSciNet  MATH  Google Scholar 

  21. Iftimie D, Sueur F. Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch Ration Mech Anal, 2011, 199: 145–175

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato T. Nonstationary flows of viscous and ideal fluids in ℝ3. J Funct Anal, 1972, 9: 296–305

    Article  MathSciNet  MATH  Google Scholar 

  23. Kato T. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations. Mathematical Sciences Research Institute Publications, vol. 2. New York: Springer, 1984, 85–98

    Chapter  Google Scholar 

  24. Kelliher J P. On Kato’s conditions for vanishing viscosity. Indiana Univ Math J, 2007, 56: 1711–1721

    Article  MathSciNet  MATH  Google Scholar 

  25. Kukavica I, Vicol V, Wang F. The inviscid limit for the Navier-Stokes equations with data analytic only near the boundary. Arch Ration Mech Anal, 2020, 237: 779–827

    Article  MathSciNet  MATH  Google Scholar 

  26. Li W, Yang T. Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points. J Eur Math Soc JEMS, 2020, 22: 717–775

    Article  MathSciNet  MATH  Google Scholar 

  27. Lopes Filho M C, Mazzucato A L, Nussenzveig Lopes H J, et al. Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull Braz Math Soc NS, 2008, 39: 471–513

    Article  MathSciNet  MATH  Google Scholar 

  28. Maekawa Y. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm Pure Appl Math, 2014, 67: 1045–1128

    Article  MathSciNet  MATH  Google Scholar 

  29. Marchioro C. On the inviscid limit for a fluid with a concentrated vorticity. Comm Math Phys, 1998, 196: 53–65

    Article  MathSciNet  MATH  Google Scholar 

  30. Masmoudi N. Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270: 777–788

    Article  MathSciNet  MATH  Google Scholar 

  31. Masmoudi N, Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch Ration Mech Anal, 2012, 203: 529–575

    Article  MathSciNet  MATH  Google Scholar 

  32. Masmoudi N, Wong T K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Comm Pure Appl Math, 2015, 68: 1683–1741

    Article  MathSciNet  MATH  Google Scholar 

  33. Mazzucato A, Taylor M. Vanishing viscosity limits for a class of circular pipe flows. Comm Partial Differential Equations, 2011, 36: 328–361

    Article  MathSciNet  MATH  Google Scholar 

  34. Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192: 433–461

    Article  MathSciNet  MATH  Google Scholar 

  35. Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm Math Phys, 1998, 192: 463–491

    Article  MathSciNet  MATH  Google Scholar 

  36. Swann H. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ℝ3. Trans Amer Math Soc, 1971, 157: 373–397

    MathSciNet  MATH  Google Scholar 

  37. Temam R, Wang X. On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Ann Sc Norm Super Pisa Cl Sci (5), 1997, 25: 807–828

    MathSciNet  MATH  Google Scholar 

  38. Wang C, Wang Y, Zhang Z. Zero-viscosity limit of the Navier-Stokes equations in the analytic setting. Arch Ration Mech Anal, 2017, 224: 555–595

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang F. The three-dimensional inviscid limit problem with data analytic near the boundary. SIAM J Math Anal, 2020, 52: 3520–3545

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang L, Xin Z, Zang A. Vanishing viscous limits for 3D Navier-Stokes equations with a Navier slip boundary condition. J Math Fluid Mech, 2012, 14: 791–825

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang X. A Kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ Math J, 2001, 50: 223–241

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiao Y, Xin Z. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60: 1027–1055

    Article  MathSciNet  MATH  Google Scholar 

  43. Xin Z, Zhang L. On the global existence of solutions to the Prandtl’s system. Adv Math, 2004, 181: 88–133

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wu, D. & Zhang, Z. On the L stability of Prandtl expansions in the Gevrey class. Sci. China Math. 65, 2521–2562 (2022). https://doi.org/10.1007/s11425-021-1896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1896-5

Keywords

MSC(2020)

Navigation