Skip to main content
Log in

Distance-covariance-based tests for heteroscedasticity in nonlinear regressions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We use distance covariance to introduce novel consistent tests of heteroscedasticity for nonlinear regression models in multidimensional spaces. The proposed tests require no user-defined regularization, which are simple to implement based on only pairwise distances between points in the sample and are applicable even if we have non-normal errors and many covariates in the regression model. We establish the asymptotic distributions of the proposed test statistics under the null and alternative hypotheses and a sequence of local alternatives converging to the null at the fastest possible parametric rate. In particular, we focus on whether and how the estimation of the finite-dimensional unknown parameter vector in regression functions will affect the distribution theory. It turns out that the asymptotic null distributions of the suggested test statistics depend on the data generating process, and then a bootstrap scheme and its validity are considered. Simulation studies demonstrate the versatility of our tests in comparison with the score test, the Cramér-von Mises test, the Kolmogorov-Smirnov test and the Zheng-type test. We also use the ultrasonic reference block data set from National Institute for Standards and Technology of USA to illustrate the practicability of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas M, Mukhopadhyay M, Ghosh A K. A distribution-free two-sample run test applicable to high-dimensional data. Biometrika, 2014, 101: 913–926

    Article  MathSciNet  MATH  Google Scholar 

  2. Chakraborty S, Zhang X Y. Distance metrics for measuring joint dependence with application to causal inference. J Amer Statist Assoc, 2019, 114: 1638–1650

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng H, Li Q. A consistent test for conditional heteroskedasticity in time-series regression models. Econometric Theory, 2001, 17: 188–221

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook R D, Weisberg S. Diagnostics for heteroscedasticity in regression. Biometrika, 1983, 70: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  5. Escanciano J C. A consistent diagnostic test for regression models using projections. Econometric Theory, 2006, 22: 1030–1051

    Article  MathSciNet  MATH  Google Scholar 

  6. Fokianos K, Pitsillou M. Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika, 2018, 105: 337–352

    Article  MathSciNet  MATH  Google Scholar 

  7. Gretton A, Bousquet O, Smola A J, et al. Measuring statistical dependence with Hilbert-Schmidt norms. In: International Conference on Algorithmic Learning Theory. Lecture Notes in Artificial Intelligence, vol. 3734. Berlin: Springer, 2005, 63–77

    MATH  Google Scholar 

  8. Guo X, Jiang X J, Zhang S M, et al. Pairwise distance-based heteroscedasticity test for regressions. Sci China Math, 2020, 63: 2553–2572

    Article  MathSciNet  MATH  Google Scholar 

  9. Heuchenne C, Van Keilegom I. Nonlinear regression with censored data. Technometrics, 2007, 49: 34–44

    Article  MathSciNet  MATH  Google Scholar 

  10. Huet S, Bouvier A, Poursat M A, et al. Statistical Tools for Nonlinear Regression. New York: Springer-Verlag, 2004

    MATH  Google Scholar 

  11. Huo X M, Székely G J. Fast computing for distance covariance. Technometrics, 2016, 58: 435–447

    Article  MathSciNet  Google Scholar 

  12. Jennrich R I. Asymptotic properties of nonlinear least squares estimators. Ann Math Statist, 1969, 40: 633–643

    Article  MathSciNet  MATH  Google Scholar 

  13. Knight K. Limiting distributions for L1 regression estimators under general conditions. Ann Statist, 1998, 26: 755–770

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee C E, Shao X F. Martingale difference divergence matrix and its application to dimension reduction for stationary multivariate time series. J Amer Statist Assoc, 2018, 113: 216–229

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee Y J, Shen C C, Priebe C E, et al. Network dependence testing via diffusion maps and distance-based correlations. Biometrika, 2019, 106: 857–873

    Article  MathSciNet  MATH  Google Scholar 

  16. Leucht A, Neumann M H. Consistency of general bootstrap methods for degenerate U-type and V-type statistics. J Multivariate Anal, 2009, 100: 1622–1633

    Article  MathSciNet  MATH  Google Scholar 

  17. Li R Z, Zhong W, Zhu L P. Feature screening via distance correlation learning. J Amer Statist Assoc, 2012, 107: 1129–1139

    Article  MathSciNet  MATH  Google Scholar 

  18. Matteson D S, Tsay R S. Independent component analysis via distance covariance. J Amer Statist Assoc, 2017, 112: 623–637

    Article  MathSciNet  Google Scholar 

  19. Pakes A, Pollard D. Simulation and the asymptotics of optimization estimators. Econometrica, 1989, 57: 1027–1057

    Article  MathSciNet  MATH  Google Scholar 

  20. Pan W L, Wang X Q, Zhang H P, et al. Ball covariance: A generic measure of dependence in Banach space. J Amer Statist Assoc, 2020, 115: 307–317

    Article  MathSciNet  MATH  Google Scholar 

  21. Patra R K, Sen B, Székely G J. On a nonparametric notion of residual and its applications. Statist Probab Lett, 2016, 109: 208–213

    Article  MathSciNet  MATH  Google Scholar 

  22. Sen A, Sen B. Testing independence and goodness-of-fit in linear models. Biometrika, 2014, 101: 927–942

    Article  MathSciNet  MATH  Google Scholar 

  23. Sen P K. Estimates of the regression coefficient based on Kendall’s tau. J Amer Statist Assoc, 1968, 63: 1379–1389

    Article  MathSciNet  MATH  Google Scholar 

  24. Serfling R L. Approximation Theorems in Mathematical Statistics. New York: Wiley, 1980

    Book  MATH  Google Scholar 

  25. Shao X F, Zhang J S. Martingale difference correlation and its use in high-dimensional variable screening. J Amer Statist Assoc, 2014, 109: 1302–1318

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen C C, Priebe C E, Vogelstein J T. From distance correlation to multiscale graph correlation. J Amer Statist Assoc, 2020, 115: 280–291

    Article  MathSciNet  MATH  Google Scholar 

  27. Sheng W H, Yin X R. Sufficient dimension reduction via distance covariance. J Comput Graph Statist, 2016, 25: 91–104

    Article  MathSciNet  Google Scholar 

  28. Sherman R P. Maximal inequalities for degenerate U-processes with applications to optimization estimators. Ann Statist, 1994, 22: 439–459

    Article  MathSciNet  MATH  Google Scholar 

  29. Stute W. Nonparametric model checks for regression. Ann Statist, 1997, 25: 613–641

    Article  MathSciNet  MATH  Google Scholar 

  30. Stute W, Xu W L, Zhu L X. Model diagnosis for parametric regression in high-dimensional spaces. Biometrika, 2008, 95: 451–467

    Article  MathSciNet  MATH  Google Scholar 

  31. Su L J, Ullah A. A nonparametric goodness-of-fit-based test for conditional heteroskedasticity. Econometric Theory, 2013, 29: 187–212

    Article  MathSciNet  MATH  Google Scholar 

  32. Székely G J, Rizzo M L. Brownian distance covariance. Ann Appl Stat, 2009, 3: 1236–1265

    MathSciNet  MATH  Google Scholar 

  33. Székely G J, Rizzo M L. Partial distance correlation with methods for dissimilarities. Ann Statist, 2014, 42: 2382–2412

    Article  MathSciNet  MATH  Google Scholar 

  34. Székely G J, Rizzo M L, Bakirov N K. Measuring and testing dependence by correlation of distances. Ann Statist, 2007, 35: 2769–2794

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan F L, Jiang X J, Guo X, et al. Testing heteroscedasticity for regression models based on projections. Statist Sinica, 2021, 31: 625–646

    MathSciNet  MATH  Google Scholar 

  36. Van der Vaart A W. Asymptotic Statistics. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  37. Van Keilegom I, González-Manteiga W, Sánchez-Sellero C. Goodness-of-fit tests in parametric regression based on the estimation of the error distribution. TEST, 2008, 17: 401–415

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang L, Zhou X H. Assessing the adequacy of variance function in heteroscedastic regression models. Biometrics, 2007, 63: 1218–1225

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang X Q, Pan W L, Hu W H, et al. Conditional distance correlation. J Amer Statist Assoc, 2015, 110: 1726–1734

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu K, He D. Omnibus model checks of linear assumptions through distance covariance. Statist Sinica, 2021, 31: 1055–1079

    MathSciNet  MATH  Google Scholar 

  41. Yao S, Zhang X Y, Shao X F. Testing mutual independence in high dimension via distance covariance. J R Stat Soc Ser B Stat Methodol, 2018, 80: 455–480

    Article  MathSciNet  MATH  Google Scholar 

  42. Zheng J X. A consistent test of functional form via nonparametric estimation techniques. J Econometrics, 1996, 75: 263–289

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng J X. Testing heteroscedasticity in nonlinear and nonparametric regressions. Canad J Statist, 2009, 37: 282–300

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhu L P, Xu K, Li R Z, et al. Projection correlation between two random vectors. Biometrika, 2017, 104: 829–843

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhu L X, Fujikoshi Y, Naito K. Heteroscedasticity checks for regression models. Sci China Ser A, 2001, 44: 1236–1252

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11901006 and 11601008) and Natural Science Foundation of Anhui Province (Grant No. 1908085QA06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Cao, M. Distance-covariance-based tests for heteroscedasticity in nonlinear regressions. Sci. China Math. 64, 2327–2356 (2021). https://doi.org/10.1007/s11425-020-1759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1759-5

Keywords

MSC(2020)

Navigation