Skip to main content
Log in

Heteroscedasticity checks for regression models

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

For checking on heteroscedasticity in regression models, a unified approach is proposed to constructing test statistics in parametric and nonparametric regression models. For nonparametric regression, the test is not affected sensitively by the choice of smoothing parameters which are involved in estimation of the nonparametric regression function. The limiting null distribution of the test statistic remains the same in a wide range of the smoothing parameters. When the covariate is one-dimensional, the tests are, under some conditions, asymptotically distribution-free. In the high-dimensional cases, the validity of bootstrap approximations is investigated. It is shown that a variant of the wild bootstrap is consistent while the classical bootstrap is not in the general case, but is applicable if some extra assumption on conditional variance of the squared error is imposed. A simulation study is performed to provide evidence of how the tests work and compare with tests that have appeared in the literature. The approach may readily be extended to handle partial linear, and linear autoregressive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carroll, R. J., Ruppert, D., Transformation and Weighting in Regression, New York: Chapman and Hall, 1988.

    MATH  Google Scholar 

  2. Cook, R. D., Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 1988, 70: 1–10.

    Article  MathSciNet  Google Scholar 

  3. Davidian, M., Carroll, R. J., Variance function estimation, J. Amer. Statist. Assoc., 1987, 82: 1079–1091.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bickel, P., Using residuals robustly I: Tests for heteroscedasticity, Ann. Statist., 1978, 6: 266–291.

    Article  MATH  MathSciNet  Google Scholar 

  5. Carroll, R. J., Ruppert, D., On robust tests for heteroscedasticity, Ann. Statist., 1981. 9: 205–209.

    Article  MathSciNet  Google Scholar 

  6. Eubank, R. L., Thomas, W., Detecting heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc., Ser. B, 1993, 55: 145–155.

    MATH  MathSciNet  Google Scholar 

  7. Diblasi, A., Bowman, A., Testing for constant variance in a linear model, Statist. and Probab. Letters, 1997, 33: 95–103.

    Article  MATH  Google Scholar 

  8. Dette, H., Munk, A., Testing heteoscedasticity in nonparametric regression, J. R. Statist. Soc. B, 1998, 60: 693–708.

    Article  MATH  MathSciNet  Google Scholar 

  9. Müller, H. G., Zhao, P. L., On a semi-parametric variance function model and a test for heteroscedasticity, Ann. Statist., 1995, 23: 946–967.

    Article  MATH  MathSciNet  Google Scholar 

  10. Stute, W., Manteiga, G., Quindimil, M. P., Bootstrap approximations in model checks for regression, J. Amer. Statist. Asso., 1998, 93: 141–149.

    Article  MATH  Google Scholar 

  11. Stute, W., Thies, G., Zhu, L. X., Model checks for regression: An innovation approach, Ann. Statist., 1998, 26: 1916–1939.

    Article  MATH  MathSciNet  Google Scholar 

  12. Shorack, G. R., Wellner, J. A., Empirical Processes with Applications to Statistics, New York: Wiley, 1986.

    Google Scholar 

  13. Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1979, 7: 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  14. Wu, C. F. J., Jackknife, bootstrap and other re-sampling methods in regression analysis, Ann. Statist., 1986, 14: 1261- 1295.

    Article  MATH  MathSciNet  Google Scholar 

  15. Härdle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993, 21: 1926- 1947.

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 1988, 16: 1696–1708.

    Article  MATH  MathSciNet  Google Scholar 

  17. Pollard, D., Convergence of Stochastic Processes, New York: Springer-Verlag, 1984.

    MATH  Google Scholar 

  18. Ginb, E., Zinn, J., On the central limit theorem for empirical processes (with discussion), Ann. Probab., 1984, 12: 929–998.

    Article  MathSciNet  Google Scholar 

  19. Nolan, D., Pollard, D., U-process: Rates of convergence, Ann. Statist., 1987, 15: 780–799.

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhu, L. X., Convergence rates of the empirical processes indexed by the class of functions with applications, J. System Sci. Math. Scis (in Chinese), 1993, 13: 33–41.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Fujikoshi, Y. & Naito, K. Heteroscedasticity checks for regression models. Sci. China Ser. A-Math. 44, 1236–1252 (2001). https://doi.org/10.1007/BF02877011

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877011

Keywords

Navigation